(1+sin2x-cos2x):(1+tan^2x)=cosx(sin2x+cos^2x)

Question

(1+sin2x-cos2x):(1+tan^2x)=cosx(sin2x+cos^2x)

in progress 0
Adalyn 3 tháng 2021-09-11T08:04:43+00:00 1 Answers 56 views 0

Answers ( )

    0
    2021-09-11T08:06:07+00:00

    Đáp án:

    Giải thích các bước giải:
    \[\begin{array}{l}
    (1 + \sin 2x – \cos 2x):(1 + ta{n^2}x) = \cos x(\sin 2x + {\cos ^2}x)(*)\\
    Dk:\cos x \ne 0 \Leftrightarrow x \ne \frac{\pi }{2} + k\pi \\
    (*) \Leftrightarrow (1 + \sin 2x – \cos 2x):\frac{1}{{{{\cos }^2}x}} = \cos x(2\sin x.\cos x + {\cos ^2}x)\\
    \Leftrightarrow (2\sin x.\cos x + 2{\sin ^2}x).{\cos ^2}x = \cos x(2\sin x.\cos x + {\cos ^2}x)\\
    \Leftrightarrow (2\sin x.\cos x + 2{\sin ^2}x).{\cos ^2}x = {\cos ^2}x(2\sin x + \cos x)\\
    \Leftrightarrow 2\sin x.\cos x + 2{\sin ^2}x = 2\sin x + \cos x
    \end{array}\]
    (Đề có bị sai k cậu,Tớ làm đến đó mất hướng rồi:(()

Leave an answer

Browse

35:5x4+1-9:3 = ? ( )