A = – √2 + √(√ 2 – 1) ² A = 1/ x – 1 – 1/ x+1 + 4x + 2/x ² – 1

Question

A = – √2 + √(√ 2 – 1) ²
A = 1/ x – 1 – 1/ x+1 + 4x + 2/x ² – 1

in progress 0
Margaret 15 phút 2021-09-20T08:42:19+00:00 2 Answers 0 views 0

Answers ( )

    0
    2021-09-20T08:43:27+00:00

    Giải thích các bước giải:

    `a)`
    `A=-sqrt{2}+sqrt{(sqrt{2}-1)^2}`
    `A=-sqrt{2}+sqrt{2}-1`
    `A=(-sqrt{2}+sqrt{2})-1`
    `A=0-1`
    `A=-1`

    Vậy `A=-1`
    `b)`
    `A=1/(x-1)-1/(x+1)+(4x+2)/(x^2-1)(x\ne+-1)`
    `A=(1.(x+1))/((x-1).(x+1))-(1.(x-1))/((x+1).(x-1))`
    `A=(x+1)/(x^2-1^2)-(x-1)/(x^2-1^2)+(4x+2)/(x^2-1)`
    `A=(x+1)/(x^2-1)-(x-1)/(x^2-1)+(4x+2)/(x^2-1)`
    `A=((x+1)-(x-1)+(4x+2))/(x^2-1)`
    `A=(x+1-x+1+4x+2)/(x^2-1)`
    `A=((x-x+4x)+(1+1+2))/(x^2-1)`
    `A=(x(1-1+4)+4)/(x^2-1)`
    `A=(x.4+4)/(x^2-1)`
    `A=(4.(x+1))/(x^2-1)`
    `A=(4.(x+1))/((x-1).(x+1))`
    `A=4/(x-1)`

    Vậy `A=4/(x-1)`

    0
    2021-09-20T08:43:51+00:00

    Đáp án:$A=-1$

     $A=\dfrac{4}{x-1}$

    Giải thích các bước giải:

     $A=-\sqrt{2}+\sqrt{(\sqrt{2}-1)^2}$

    $A=-\sqrt{2}+\sqrt{2}-1$

    $A=-1$

    ——————————————————————

    $A=\dfrac{1}{x-1}-\dfrac{1}{x+1}+\dfrac{4x+2}{x^2-1}$

    $Đkxđ:x\neq \pm 1$

    $A=\dfrac{x+1}{x^2-1}-\dfrac{x-1}{x^2-1}+\dfrac{4x+2}{x^2-1}$

    $A=\dfrac{4x+4}{x^2-1}$
    $A=\dfrac{4}{x-1}$

Leave an answer

Browse

35:5x4+1-9:3 = ? ( )