`a,` Tìm tất cả các số tự nhiên `m, n` sao cho `2^m + 2017 = |n – 2018| + n – 2018` `b,` Tìm `max` hoặc `min` (nếu có thể) của `B = (x^2 + 2019)/(2017

Question

`a,` Tìm tất cả các số tự nhiên `m, n` sao cho `2^m + 2017 = |n – 2018| + n – 2018`
`b,` Tìm `max` hoặc `min` (nếu có thể) của `B = (x^2 + 2019)/(2017x^2 + 2018)`

in progress 0
aihong 11 phút 2021-09-10T02:58:30+00:00 2 Answers 0 views 0

Answers ( )

    0
    2021-09-10T03:00:00+00:00

    Đáp án:

     

    Giải thích các bước giải:

     `a)2^m+2017=|n-2018|+n-2018`

    `TH1:n>=2018`

    `=>2^m+2017=|n-2018|+n-2018=n-2018+n-2018`

    `=>2^m+2017=2n-4036`

    Ta có `2n-4036` chẵn

    `=>2^m+2017` chẵn

    `=>2^m` lẻ

    `=>m=0`

    `=>n=3027`

    `TH1:n<2018`

    `=>2^m+2017=|n-2018|+n-2018=2018-n+n-2018`

    `=>2^m+2017=0`

    Ta có `m∈N=>2^m+2017>0`

    `=>`Loại

    Vậy `(m,n)` là `(0,3027)`

    `b)B=(x^2+2019)/(2017x^2+2018)`

    `+)2019/2018 -B=2019/2018 -(x^2+2019)/(2017x^2+2018) =(4070305x^2)/(2018(2017x^2+2018) “>=0∀x`

    Dấu `=` xảy ra `<=>x=0`

    Vậy $Max_{B}=$ `2019/2018<=>x=0`

    0
    2021-09-10T03:00:10+00:00

    Đáp án:

     

    Giải thích các bước giải:

    a) Vì `|n-2018|+n-2018` luôn chẵn với `n-2018 in ZZ`

    `=>2^m +2017` là số chẵn `=>2^m` lẻ `<=>m=0`

    Khi đó `|n-2018|+n-2018=2018`

    Nếu `n<2018`, ta có `2018-n + n – 2018 = 2018 => 0 = 2018` (loại)

    Nếu `n>=2018`, ta được `n-2018 + n-2018=2018 =>n=3027` (Nhận)

    Vậy `(m;n)=(0;3027)`

    b) `B=(x^2+2019)/(2017x^2+2018)=(x^2+2019)/(2017(x^2+1)+1`

    Vì mẫu luôn `>=0` với mọi `x in RR`

    `=>` Giá trị lớn nhất của `B=2019/2018 <=>x=0`   

Leave an answer

Browse

35:5x4+1-9:3 = ? ( )