Bài 1: Cho các phân thức sau: A= $\frac{2x + 6}{(x +3)(x-2)}$ B= $\frac{x^{2}-9 }{x^2-6x=9}$ C= $\frac{9x^2-16}{3x^2-4

Question

Bài 1: Cho các phân thức sau:
A= $\frac{2x + 6}{(x +3)(x-2)}$ B= $\frac{x^{2}-9 }{x^2-6x=9}$
C= $\frac{9x^2-16}{3x^2-4x}$ D= $\frac{x^2+4x+4}{2x+4}$
E= $\frac{2x-x^2}{x^2-4}$ F= $\frac{3x^2+6x+12}{x^3-8}$
a)Với điều kiện nào của x thì giá trị của các phân thức trên xác định
b)Tìm x để giá trị của các phân thức trên bằng 0
c)Rút gọn thân thức trên

in progress 0
Faith 4 tuần 2021-08-18T22:50:15+00:00 1 Answers 0 views 0

Answers ( )

    0
    2021-08-18T22:52:09+00:00

    Giải thích các bước giải:

    Ta có:

    \(\begin{array}{l}
    A = \frac{{2x + 6}}{{\left( {x + 3} \right)\left( {x – 2} \right)}}\,\,\,\,\,\left( {\left\{ \begin{array}{l}
    x \ne  – 3\\
    x \ne 2
    \end{array} \right.} \right)\\
    A = 0 \Leftrightarrow 2x + 6 = 0 \Leftrightarrow x =  – 3\,\,\,\left( {ko\,\,t/m} \right)\\
    A = \frac{{2x + 6}}{{\left( {x + 3} \right)\left( {x – 2} \right)}} = \frac{{2\left( {x + 3} \right)}}{{\left( {x + 3} \right)\left( {x – 2} \right)}} = \frac{2}{{x – 2}}\\
    B = \frac{{{x^2} – 9}}{{{x^2} – 6x + 9}}\,\,\,\,\left( {x \ne 3} \right)\\
    B = 0 \Leftrightarrow {x^2} – 9 = 0 \Leftrightarrow \left[ \begin{array}{l}
    x = 3\,\,\,\left( L \right)\\
    x =  – 3\,\,\left( {t/m} \right)
    \end{array} \right.\\
    C = \frac{{9{x^2} – 16}}{{3{x^2} – 4x}}\,\,\,\,\,\left( {\left\{ \begin{array}{l}
    x \ne 0\\
    x \ne \frac{4}{3}
    \end{array} \right.} \right)\\
    C = 0 \Leftrightarrow 9{x^2} – 16 = 0 \Leftrightarrow \left[ \begin{array}{l}
    x = \frac{4}{3}\left( L \right)\\
    x =  – \frac{4}{3}\left( {t/m} \right)
    \end{array} \right.\\
    D = \frac{{{x^2} + 4x + 4}}{{2x + 4}}\,\,\,\left( {x \ne  – 2} \right)\\
    D = 0 \Leftrightarrow {x^2} + 4x + 4 = 0 \Leftrightarrow x =  – 2\,\,\left( L \right)\\
    D = \frac{{{{\left( {x + 2} \right)}^2}}}{{2\left( {x + 2} \right)}} = \frac{{x + 2}}{2}
    \end{array}\)

Leave an answer

Browse

35:5x4+1-9:3 = ? ( )