Cho biểu P=($\frac{1}{x-\sqrt{x}}+\frac{1}{\sqrt{x}-1}$):$\frac{\sqrt{x}}{x-2\sqrt{x}+1}$ Với x>0, x∦1. a) Rút gọn biểu thức P. b) Tìm các giá trị của
Question
Lost your password? Please enter your email address. You will receive a link and will create a new password via email.
Answers ( )
Đáp án:
$\begin{array}{l}
a)Dkxd:x > 0;x \ne 1\\
P = \left( {\dfrac{1}{{x – \sqrt x }} + \dfrac{1}{{\sqrt x – 1}}} \right):\dfrac{{\sqrt x }}{{x – 2\sqrt x + 1}}\\
= \left( {\dfrac{1}{{\sqrt x \left( {\sqrt x – 1} \right)}} + \dfrac{1}{{\sqrt x – 1}}} \right).\dfrac{{{{\left( {\sqrt x – 1} \right)}^2}}}{{\sqrt x }}\\
= \dfrac{{1 + \sqrt x }}{{\sqrt x .\left( {\sqrt x – 1} \right)}}.\dfrac{{{{\left( {\sqrt x – 1} \right)}^2}}}{{\sqrt x }}\\
= \dfrac{{\sqrt x + 1}}{{\sqrt x }}.\dfrac{{\sqrt x – 1}}{{\sqrt x }}\\
= \dfrac{{x – 1}}{x}\\
b)x > 0;x \ne 1\\
P < \dfrac{1}{3}\\
\Rightarrow \dfrac{{x – 1}}{x} < \dfrac{1}{3}\\
\Rightarrow \dfrac{{x – 1}}{x} – \dfrac{1}{3} < 0\\
\Rightarrow \dfrac{{3\left( {x – 1} \right) – x}}{{3x}} < 0\\
\Rightarrow 3x – 3 – x < 0\left( {do:x > 0} \right)\\
\Rightarrow 2x – 3 < 0\\
\Rightarrow x < \dfrac{3}{2}\\
Vậy\,0 < x < \dfrac{3}{2};x \ne 1
\end{array}$