Cho x+ $\frac{1}{y}$ =3 ; y+ $\frac{1}{x}$ =5. Tính $\frac{x^3y^3}{x^6y^6+1}$

Question

Cho x+ $\frac{1}{y}$ =3 ; y+ $\frac{1}{x}$ =5. Tính $\frac{x^3y^3}{x^6y^6+1}$

in progress 0
Adalynn 4 giờ 2021-09-09T14:05:46+00:00 2 Answers 0 views 0

Answers ( )

    0
    2021-09-09T14:06:48+00:00

    Mk trình bày trong hình 

     

    0
    2021-09-09T14:07:37+00:00

    Đáp án:

    \(\dfrac{x^3y^3}{x^6y^6+1}=\dfrac1{2158}\) 

    Giải thích các bước giải:

    \(\begin{cases}x+\dfrac1y=3\\ y+\dfrac1x=5\end{cases}\)

    \(\Rightarrow \left(x+\dfrac1y\right)\left(y+\dfrac1x\right)=3\cdot 5=15\\ \Rightarrow xy+1+\dfrac 1{xy}+1=15\\ \Rightarrow xy+\dfrac 1{xy}=13\\ \Rightarrow \left(xy+\dfrac1{xy}\right)^3=13^3\\ \Rightarrow x^3y^3+3x^2y^2\cdot \dfrac1{xy}+3xy\cdot \dfrac1{x^2y^2}+\dfrac1{x^3y^3}=2197\\ \Rightarrow x^3y^3+\dfrac1{x^3y^3}+3\left(xy+\dfrac1{xy}\right)=2197\\ \Rightarrow x^3y^3+\dfrac1{x^3y^3}=2197-3\cdot 13=2158\\ \Rightarrow \dfrac{x^6y^6+1}{x^3y^3}=2158\\ \Rightarrow \dfrac{x^3y^3}{x^6y^6+1}=\dfrac1{2158}\)

    Vậy \(\dfrac{x^3y^3}{x^6y^6+1}=\dfrac1{2158}\)

Leave an answer

Browse

35:5x4+1-9:3 = ? ( )