cho hình chóp SABCD có đáy ABCD là hình thoi các cạnh bằng a và góc ABC = 60* SA vuông (ABCD) , SA =2a . tính thể tích của a)SABCD b)MABCD (M là tr

Question

cho hình chóp SABCD có đáy ABCD là hình thoi các cạnh bằng a và góc ABC = 60* SA vuông (ABCD) , SA =2a . tính thể tích của
a)SABCD b)MABCD (M là trung điểm SB) c) MNSA ( N là trug điểm CD ) d) SCMN e)MNDA

in progress 0
Skylar 6 ngày 2021-09-09T14:33:10+00:00 2 Answers 2 views 0

Answers ( )

    0
    2021-09-09T14:34:36+00:00

    a) $V_{S.ABCD} = \dfrac{1}{3}S_{ABCD}.SA$

    $S_{ABCD} = \dfrac{1}{2}AC.BD$

    $ΔABC$ đều ⇒ $AB = AC = BC = a; \, BD = 2BO = a\sqrt{3}$ (Với $O$ là giao điểm 2 đường chéo $AC, BD$)

    ⇒ $S_{ABCD} = \dfrac{1}{2}a.a\sqrt{3}$

    ⇒ $V_{S.ABCD} = \dfrac{1}{3}\dfrac{1}{2}a.a\sqrt{3}.2a = \dfrac{a^{3}\sqrt{3}}{3} \, (đvtt)$

    b) Kẻ $MI\perp AB \, (I \in AB)$

    ⇒ $MI//SA$

    mà $SA\perp (ABCD)$

    nên $MI\perp (ABCD)$

    ⇒ $V_{M.ABCD} = \dfrac{1}{3}S_{ABCD}.MI = \dfrac{1}{3}\dfrac{1}{2}a.a\sqrt{3}.a = \dfrac{a^{3}\sqrt{3}}{6} \, (đvtt)$

    c) Ta có: $CI\perp AB$

    ⇒ $NA\perp AB$

    mà $NA \perp SA \, (SA\perp (ABCD))$

    ⇒ $NA\perp (SAB)$

    Kẻ $MK\perp SA \, (K \in SA)$

    ⇒ $NA\perp MK$

    ⇒ $MK\perp (SAN)$

    ⇒ $V_{M.NSA} = \dfrac{1}{3}S_{SAN}.MK = \dfrac{1}{3}.\dfrac{1}{2}.SA.AN.MK = \dfrac{1}{6}.2a.\dfrac{a\sqrt{3}}{2}.\dfrac{a}{2} = \dfrac{a^{3}\sqrt{3}}{12} \, (đvtt)$

    e) Ta có $MI\perp (ABCD)$ (câu b)

    ⇒ $MI\perp (ADN)$

    ⇒ $V_{M.NDA} = \dfrac{1}{3}S_{DAN}.MI = \dfrac{1}{3}.\dfrac{1}{2}.AN.DN.MI = \dfrac{1}{6}.\dfrac{a\sqrt{3}}{2}.\dfrac{a}{2}.a = \dfrac{a^{3}\sqrt{3}}{24} \, (đvtt)$

    0
    2021-09-09T14:34:50+00:00

    Đáp án:

    a) $V_{SABCD}=\dfrac{a^3}{\sqrt3}$

    Giải thích các bước giải:

    a) Vì tứ giác $ABCD$ là hình thoi nên $AB=BC=a$ mà $\widehat{ ABC}=60 ^o$ nên $\Delta ABC$ là tam giác đều cạnh $a$

    $⇒ S_{ABC} =\dfrac12a.a.\sin60^o=\dfrac{a^2\sqrt3}{4}$

    $⇒ S_{ABCD}=2S_{ABC}=\dfrac{a^{2}\sqrt3}{2}$

    $⇒ V_{S.ABCD}= \dfrac{1}{3}.SA.S_{ABCD} =\dfrac{1}{3}.2a.\dfrac{a^{2}\sqrt3}{2} $

    $=\dfrac{a^{3}}{\sqrt3}$.

Leave an answer

Browse

35:5x4+1-9:3 = ? ( )