Cho (p) : y=x^2 (d):y=2(m+2)x-m-1 (m là tham số ) a, Vẽ ĐT của (p) và (d) trên cùng mặt phẳng tọa độ khi m=-3/2 . Tìm tọa độ giao điểm nếu

Question

Cho (p) : y=x^2
(d):y=2(m+2)x-m-1 (m là tham số )
a, Vẽ ĐT của (p) và (d) trên cùng mặt phẳng tọa độ khi m=-3/2 . Tìm tọa độ giao điểm nếu có
b, Tìm m để :
+(d) và (p) không có điểm chung
+(d) và (p) tiếp xúc nhau
+(d) và (p) cắt nhau tại 2 điểm phân biệt

in progress 0
Eliza 2 tháng 2021-10-05T02:24:21+00:00 1 Answers 10 views 0

Answers ( )

    0
    2021-10-05T02:25:26+00:00

    Giải thích các bước giải:

    a.Khi $m=-\dfrac32\to y=x+\dfrac12$

    $\to$Đồ thị hàm số $(d):y=x+\dfrac12$ là đường thẳng đi qua $(0 , \dfrac12), (-\dfrac12, 0)$

    Ta có đồ thị hàm số $y=x^2$ là Parabol có đỉnh $(0,0)$ và đi qua $(1, 1), (-1,1), (2, 4), (-2, 4)$ 

    b.Phương trình hoành độ giao điểm của $(d), (P)$ là:

    $x^2=2(m+2)x-m-1$

    $\to x^2-2(m+2)x+(m+1)=0(*)$

    $\to\Delta’=(m+2)^2-1(m+1)=m^2+3m+3$

    Để $(d), (P)$ khôn có điểm chung $\to (*)$ vô nghiệm

    $\to \Delta'< 0$

    $\to m^2+3m+3< 0$

    $\to \left(m+\dfrac{3}{2}\right)^2+\dfrac{3}{4}<0$ vô lý

    $\to$Không tồn tại $m$ thỏa mãn đề

    Để $(d), (P)$ tiếp xúc

    $\to (*)$ có nghiệm kép

    $\to\Delta=0$

    $\to m^2+3m+3=0$

    $\to \left(m+\dfrac{3}{2}\right)^2+\dfrac{3}{4}=0$ vô lý

    Vì $\Delta’=\left(m+\dfrac{3}{2}\right)^2+\dfrac{3}{4}>0$

    $\to$Phương trình $(*)$ luôn có $2$ nghiệm phân biệt

    $\to$Với mọi $m$ thì $(d), (P)$ cắt nhau tại $2$ điểm phân biệt

Leave an answer

Browse

35:5x4+1-9:3 = ? ( )