cho phương trình x2 – 2x – 2m2 = 0 a) Giải phương trình khi m = 0 b) Tìm m để phương trình có hai nghiệm phân biệt x1, x2 thỏa mãn: $x_{1

Question

cho phương trình x2 – 2x – 2m2 = 0
a) Giải phương trình khi m = 0
b) Tìm m để phương trình có hai nghiệm phân biệt x1, x2 thỏa mãn: $x_{1}$ $^{2}$ = 4$x_{2}$ $^{2}$

in progress 0
Ayla 24 giờ 2021-09-16T18:12:01+00:00 1 Answers 0 views 0

Answers ( )

    0
    2021-09-16T18:13:41+00:00

    Đáp án:

    a) $x = 0; x = 2$

    b) $m = ±2$

     

    Giải thích các bước giải:

    $x² – 2x – 2m² = 0 (1)$

    a) Khi $ m = 0$ thì $(1)$ thành:

    $x² – 2x = 0 ⇔ x(x – 2) = 0 ⇔ x = 0; x = 2$

    b) $ac = 1.(-2m²) ≤ 0 ⇒ (1)$ luôn có 2 nghiệm $x_{1}; x_{2}$ trái dấu nhau:

    Theo gt $: x_{1}² = 4x_{2}² ⇒ x_{1} = – 2x_{2} $

    Theo Vi ét $: x_{1} + x_{2} = 2 (3); x_{1}x_{2}= – 2m² (4)$

    Thay $(2)$ vào $(3) : x_{2} = – 2; ⇒ x_{1} = 4$

    Thay vào $(4):  4.(-2) = – 2m² ⇒ m = ±2$

     

Leave an answer

Browse

35:5x4+1-9:3 = ? ( )