Cho tứ diện ABCD có cạnh bằng a. Gọi M, N, P, Q lần lượt là trung điểm của các canh BC, AD, AC,BD và G là giao điểm của MN và PQ. Tính diện tích tam g

Question

Cho tứ diện ABCD có cạnh bằng a. Gọi M, N, P, Q lần lượt là trung điểm của các canh BC, AD, AC,BD và G là giao điểm của MN và PQ. Tính diện tích tam giác GAB?

in progress 0
Raelynn 3 giờ 2021-09-09T12:19:02+00:00 1 Answers 0 views 0

Answers ( )

    0
    2021-09-09T12:20:58+00:00

    Gọi G’ là trọng tâm tam giác BCD, do đó $AG’ \perp (BCD)$ và $AG = \dfrac{2}{3} AG’$.

    Ta tính được $DM = \dfrac{a\sqrt{3}}{2}$ là đường cao của tam giác đều cạnh $a$.

    Khi đó $DG’ = \dfrac{a\sqrt{3}}{3}$

    Áp dụng Pytago ta có

    $AG’^2 = AD^2 – DG’$

    Vậy $AG’ = \dfrac{a\sqrt{6}}{3}$

    Gọi R là trung điểm CD. Khi đó G là trọng tâm tam giác BRA và cũng suy ra $BG = AG = \dfrac{2a\sqrt{6}}{9}$.

    Vậy tam giác GAB cân tại G.

    Hạ $GH \perp AB$. KHi đó, áp dụng Pytago ta tính đc $GH = \dfrac{a\sqrt{15}}{18}$.

    Vậy

    $S_{GAB} = \dfrac{1}{2} AB.GH = \dfrac{1}{2} . a . \dfrac{a\sqrt{15}}{18} = \dfrac{a^2\sqrt{15}}{36}$.

Leave an answer

Browse

35:5x4+1-9:3 = ? ( )