Cho vecto v(a;b) sao cho khi tịnh tiến đồ thị y=f(x)=$x^{3}$ +3x+1 theo vecto v ta nhận được đồ thị hàm số y=g(x)= $x^{3}$ – 3$x^{2}$ +6x-1. Tính P=

Question

Cho vecto v(a;b) sao cho khi tịnh tiến đồ thị y=f(x)=$x^{3}$ +3x+1 theo vecto v ta nhận được đồ thị hàm số y=g(x)= $x^{3}$ – 3$x^{2}$ +6x-1. Tính P=a+b

in progress 0
Gianna 2 tháng 2021-09-28T15:13:57+00:00 1 Answers 108 views 0

Answers ( )

    0
    2021-09-28T15:15:50+00:00

    Đáp án:

    \(P=3.\)

    Giải thích các bước giải:

    \(\begin{array}{l} y = f\left( x \right) = {x^3} + 3x + 1\,\,\,\,\,\left( {{C_1}} \right)\\ y = g\left( x \right) = {x^3} – 3{x^2} + 6x – 1\,\,\,\left( {{C_2}} \right)\\ \text{Gọi }M\left( {x;\,\,y} \right) \in \left( {{C_1}} \right)\\ M’\left( {x’;\,\,y’} \right)\text{ là ảnh của }M\text{ qua }{T_{\overrightarrow v }}\\ \Rightarrow \left\{ \begin{array}{l} x’ = x + a\\ y’ = y + b \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x = x’ – a\\ y = y’ – b \end{array} \right.\\ \Rightarrow M\left( {x’ – a;\,\,y’ – b} \right) \in \left( {{C_1}} \right)\\ \Rightarrow y’ – b = {\left( {x’ – a} \right)^3} + 3\left( {x’ – a} \right) + 1\\ \Leftrightarrow y’ – b = x{‘^3} – 3ax{‘^2} + 3{a^2}x’ – {a^3} + 3x’ – 3a + 1\\ \Leftrightarrow y’ = x{‘^3} – 3ax{‘^2} + \left( {3{a^2} + 3} \right)x’ – {a^3} -3a+ b + 1\\ \Rightarrow \left\{ \begin{array}{l} – 3a = – 3\\ 3{a^2} + 3 = 6\\ – {a^3} -3a+ b + 1 = – 1 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} a = 1\\ {a^2} = 1\\ b – {a^3}-3a= – 2 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} a = 1\\ b =-2+a^2.a+3a=-2+1+3= 2 \end{array} \right.\\ \Rightarrow P = a + b = 1 +2 = 3. \end{array}\)

Leave an answer

Browse

35:5x4+1-9:3 = ? ( )