Chứng minh S = 5+5^2+5^3+…+5^300 chia hết cho 6 và 31

Question

Chứng minh S = 5+5^2+5^3+…+5^300 chia hết cho 6 và 31

in progress 0
Alaia 2 năm 2021-08-09T01:38:24+00:00 2 Answers 6 views 0

Answers ( )

    0
    2021-08-09T01:39:56+00:00

    Đáp án:

     

    Giải thích các bước giải: $$S=5+5^2+5^3+…+5^{300}\\\Leftrightarrow 5S=5^2+5^3+…+5^{301}\\\Leftrightarrow 5S-S=5^{301}-5=4S\\\Leftrightarrow S=\frac{5^{301}-5}{4}$$

    Ta có : $$\frac{5^6-5}{4}\equiv 5(mod\hspace{0,1cm}6)\\\Leftrightarrow 5^6-5\equiv 2(mod\hspace{0,1cm}6)\\\Leftrightarrow 5^6\equiv 1(mod\hspace{0,1cm}6)\\\Leftrightarrow …..$$

     

    0
    2021-08-09T01:40:01+00:00

    Đáp án:

    $\begin{array}{l}
    S = 5 + {5^2} + {5^3} + … + {5^{300}}\\
     = \left( {5 + {5^2}} \right) + \left( {{5^3} + {5^4}} \right) + … + \left( {{5^{299}} + {5^{300}}} \right)\\
     = 5\left( {1 + 5} \right) + {5^3}\left( {1 + 5} \right) + … + {5^{299}}\left( {1 + 5} \right)\\
     = 5.6 + {5^3}.6 + … + {5^{299}}.6\\
     = \left( {5 + {5^3} + … + {5^{299}}} \right).6 \vdots 6\\
    S = 5 + {5^2} + {5^3} + … + {5^{300}}\\
     = \left( {5 + {5^2} + {5^3}} \right) + \left( {{5^4} + {5^5} + {5^6}} \right) + … + \left( {{5^{298}} + {5^{299}} + {5^{300}}} \right)\\
     = 5\left( {1 + 5 + {5^2}} \right) + {5^4}\left( {1 + 5 + {5^2}} \right) + … + {5^{288}}\left( {1 + 5 + {5^2}} \right)\\
     = 5.31 + {5^4}.31 + … + {5^{288}}.31\\
     = \left( {5 + {5^4} + … + {5^{288}}} \right).31 \vdots 31
    \end{array}$

Leave an answer

Browse

35:5x4+1-9:3 = ? ( )