Có bao nhiêu số nguyên m thuộc [-2018;2018] để đồ thị hàm số y=1/3x^3 – mx^2 + (2m-1)x -3 có hai điểm cực trị nằm về 2 phía của đường thẳng y=-x

Question

Có bao nhiêu số nguyên m thuộc [-2018;2018] để đồ thị hàm số y=1/3x^3 – mx^2 + (2m-1)x -3 có hai điểm cực trị nằm về 2 phía của đường thẳng y=-x

in progress 0
Autumn 3 tháng 2021-09-16T07:20:11+00:00 1 Answers 20 views 0

Answers ( )

    0
    2021-09-16T07:21:26+00:00

    Đáp án:

    Giải thích các bước giải:
    $\begin{array}{l}
    y = \frac{1}{3}{x^3} – m{x^2} + (2m – 1)x – 3\\
    \Rightarrow y’ = x{}^2 – 2mx + 2m – 1 = 0\\
    \Leftrightarrow \left[ \begin{array}{l}
    x = 1\\
    x = 2m – 1
    \end{array} \right.\\
    x = 1 \Rightarrow y = m – \frac{{11}}{3}\\
    x = 2m – 1 \Rightarrow y = \frac{{ – 4}}{3}{m^3} – 12{m^2} – 3m – \frac{7}{3}\\
    m – \frac{{11}}{3} > – 1 \Leftrightarrow m > \frac{8}{3} \Rightarrow y(2m – 1) < - 120,95 < - 1\\ m - \frac{{11}}{3} < - 1 \Leftrightarrow m < \frac{8}{3} \Rightarrow y(2m - 1) > – 1 \Leftrightarrow m < - 8,756\\ \end{array}$

Leave an answer

Browse

35:5x4+1-9:3 = ? ( )