giả sử x=a/m, y=b/m (a,b,m thuộc Z, m>0) và x

Question

giả sử x=a/m, y=b/m (a,b,m thuộc Z, m>0) và x

in progress 0
Faith 42 phút 2021-10-04T14:05:36+00:00 2 Answers 0 views 0

Answers ( )

    0
    2021-10-04T14:06:54+00:00

    Đề bài:

    Giả sử $x=\dfrac am, y=\dfrac bm$ $(a,b,m \in\mathbb Z, m>0)$ và $x<y$.

    Hãy chứng tỏ rằng nếu chọn $z=\dfrac{a+b}{2m}$ thì ta có $x<z<y$.

    Bài làm:

    Ta có: $x=\dfrac am, y=\dfrac bm$ $(a,b,m \in\mathbb Z, m>0)$ và $x<y$

    $\Rightarrow a<b$

    $\Rightarrow a+a<a+b\Leftrightarrow 2a<a+b$

    Cũng do $a<b\Rightarrow a+b<b+b\Leftrightarrow a+b<2b$

    Từ hai điều trên suy ra $2a<a+b<2b$

    Mà $ x=\dfrac{2a}{2m},y=\dfrac{2b}{2m},z=\dfrac{a+b}{2m}$ $(m>0)$

    $\Rightarrow\dfrac{2a}{2m}<\dfrac{a+b}{2m}<\dfrac{2b}{2m}$

    Vậy $x<z<y$ (đpcm).

    0
    2021-10-04T14:07:34+00:00

    Đáp án:

    `x = a/m ; y = b/m  =>  z = \frac{a+ b}{2m} => z = x + y <=> x , y ⊂ z <=> x < y < z `

    Giải thích các bước giải:

    Áp dụng tính chất kết hợp để giải bài toán trên.

Leave an answer

Browse

35:5x4+1-9:3 = ? ( )