Hình thang cân ABCD (AB // CD) có BD vuông góc với BC và BD là tia phân giác của góc D. a)CM: góc BCD= 2. góc BDC. b)Tính số đo các góc của hình than

Question

Hình thang cân ABCD (AB // CD) có BD vuông góc với BC và BD là tia phân giác của góc D.
a)CM: góc BCD= 2. góc BDC.
b)Tính số đo các góc của hình thang
c)Với BC=3cm. Tính chu vi và diện tích của hình thang ABCD

in progress 0
Clara 2 tháng 2021-08-12T02:14:15+00:00 2 Answers 0 views 0

Answers ( )

    0
    2021-08-12T02:15:34+00:00

    a) Ta có: $\widehat{BCD} = \widehat{ADC}$ $(gt)$

    $\widehat{BDC} = \dfrac{1}{2}\widehat{ADC}$ $(gt)$

    $\Rightarrow \widehat{BDC} = \dfrac{1}{2}\widehat{BCD}$

    Hay $\widehat{BCD} = 2\widehat{BDC}$

    b) Ta có:

    $\widehat{BDC} + \widehat{BCD} = 90^o$ ($ΔBCD$ vuông tại $B$)

    $\Leftrightarrow \dfrac{1}{2}\widehat{BCD} + \widehat{BCD} = 90^o$ 

    $\Leftrightarrow \dfrac{3}{2}\widehat{BCD} = 90^o$

    $\Leftrightarrow \widehat{BCD} = 60^o$

    $\Rightarrow \widehat{ADC} = \widehat{BCD} = 60^o$

    $\Rightarrow \widehat{DAB} = \widehat{ABC} = 180^o – \widehat{BCD} = 180^o – 60^o = 120^o$

    c) Từ $A$ và $B$ kẻ các đường cao $AH, \, BK$

    $\Rightarrow ABKH$ là hình chữ nhật

    $\Rightarrow AB = HK; \, DH = KC$

    Ta có: $\widehat{BCD} = 60^o$

    $\Rightarrow ΔKBC$ là nửa tam giác đều cạnh $BC$

    $\Rightarrow KC = \dfrac{1}{2}BC = \dfrac{1}{2}.3 = \dfrac{3}{2} \, cm$

    $\Rightarrow BK = BC\dfrac{\sqrt3}{2} = \dfrac{3\sqrt3}{2} \, cm$

    Ta cũng có: $ΔKDC$ là nửa tam giác đều cạnh $DC$

    $\Rightarrow DC = 2BC = 2.3 = 6 \, cm$

    $\Rightarrow AB = HK = DC – 2KC = 6 – 2.\dfrac{3}{2} = 3 \, cm$

    Ta được:

    $P_{ABCD} = AB + BC + CD + DA = 3 + 3 + 6 + 3 = 15 \, cm$

    $S_{ABCD} = \dfrac{1}{2}(AB + CD)BK = \dfrac{1}{2}(3 + 6).\dfrac{3\sqrt3}{2} = \dfrac{27\sqrt3}{4} \, cm^2$

    0
    2021-08-12T02:15:35+00:00

    Đáp án:

     

    Giải thích các bước giải:

     

Leave an answer

Browse

35:5x4+1-9:3 = ? ( )