Làm ạ Tìm đa thức bậc hai biết `f (x) – f (x – 1) = x` từ đó áp dụng tính tổng `S = 1 + 2 + 3 + … + n`

Question

Làm ạ
Tìm đa thức bậc hai biết `f (x) – f (x – 1) = x` từ đó áp dụng tính tổng `S = 1 + 2 + 3 + … + n`

in progress 0
Amara 1 năm 2021-09-02T09:38:48+00:00 1 Answers 5 views 0

Answers ( )

    0
    2021-09-02T09:39:49+00:00

    Đáp án:

    `f(x)=1/ 2 x^2+1/ 2 x+c` `(c\in RR` bất kỳ)

    `S=1+2+3+…+n={n(n+1)}/2`

    Giải thích các bước giải:

    Vì `f(x)` là đa thức bậc hai

    `=>f(x)=ax^2+bx+c` `(a;b;c\in RR; a\ne 0)`

    `=>f(x-1)=a(x-1)^2+b(x-1)+c`

    `=>f(x-1)=a(x-1)(x-1)+b(x-1)+c`

    `=>f(x-1)=a(x^2-x-x+1)+bx-b+c`

    `=>f(x-1)=ax^2-2ax+a+bx-b+c`

    `=>f(x-1)=ax^2+(b-2a)x+a-b+c`

    Theo đề bài:

    `\qquad f(x)-f(x-1)=x`

    `<=>(ax^2+bx+c)-[ax^2+(b-2a)x+a-b+c]=x`

    `<=>2ax-a+b=x`

    `<=>`$\begin{cases}2a=1\\-a+b=0\end{cases}$

    `<=>`$\begin{cases}a=\dfrac{1}{2}\\b=a=\dfrac{1}{2}\end{cases}$

    Vậy `f(x)=1/ 2 x^2+1/ 2 x+c` `(c\in RR` bất kỳ)

    $\\$

    Với `x=n` ta có: `f(n)=1/ 2 n^2+1/ 2 n+c`

    Với `x=0` ta có: `f(0)=1/ 2 .0^2+1/ 2 .0+c=0`

    $\\$

    Vì `x=f(x)-f(x-1)` nên ta có:

    +) `x=1=>1=f(1)-f(0)`

    +) `x=2=>2=f(2)-f(1)`

    +) `x=3=>3=f(3)-f(2)`

    ……

    +) `x=n-1=>n-1=f(n-1)-f(n-2)`

    +) `x=n=>n=f(n)-f(n-1)`

    `=>S=1+2+3+…+(n-1)+n=f(1)-f(0)+f(2)-f(1)+f(3)-f(2)+…+f(n-1)-f(n-2)+f(n)-f(n-1)`

    `=>S=f(n)-f(0)`

    `=>S=(1/ 2 n^2+1/ 2 n+c)-c=(n^2+n)/2`

    `=>S={n(n+1)}/2`

    Vậy `f(x)=1/ 2 x^2+1/ 2 x+c` `(c\in RR` bất kỳ)

    `\qquad S=1+2+3+…+n={n(n+1)}/2`

Leave an answer

Browse

35:5x4+1-9:3 = ? ( )