Một người đứng trên 1 đỉnh tháp có độ cao h phải ném ném 1 hòn đá với vận tốc tối thiểu bằng bao nhiêu để hòn đá rơi cách chân tháp 1 khoảng L cho trư

Question

Một người đứng trên 1 đỉnh tháp có độ cao h phải ném ném 1 hòn đá với vận tốc tối thiểu bằng bao nhiêu để hòn đá rơi cách chân tháp 1 khoảng L cho trước.Tính góc ném ứng với vận tốc đó

in progress 0
Reagan 4 tháng 2021-08-16T05:28:28+00:00 1 Answers 17 views 0

Answers ( )

    0
    2021-08-16T05:29:37+00:00

    Đáp án:

    1. ${v_{\min }} = \sqrt {g\left( {h – \sqrt {{h^2} – {L^2}} } \right)} $

    2. $\alpha  = \arctan \left( {\dfrac{{h – \sqrt {{h^2} – {L^2}} }}{L}} \right)$

    Giải thích các bước giải:

    1. Ta có:
    $\begin{array}{l}
    y = x\tan \alpha  – \dfrac{{g{x^2}}}{{2{v_o}^2{{\cos }^2}\alpha }} = x\tan \alpha  – \dfrac{{g\left( {{{\tan }^2}\alpha  + 1} \right)}}{{2{v_o}^2}}{x^2}\\
     \Leftrightarrow h = L\tan \alpha  – \dfrac{{g{L^2}}}{{2{v_o}^2}}{\tan ^2}\alpha  – \dfrac{{g{L^2}}}{{2{v_o}^2}}\\
     \Leftrightarrow {\tan ^2}\alpha  – \dfrac{{2{v_o}^2}}{{gL}}\tan \alpha  + \dfrac{{2h{v_o}^2}}{{g{L^2}}} + 1 = 0
    \end{array}$

    Để có thể ném tới vị trí đó, phương trình trên cần có nghiệm, do đó:

    $\begin{array}{l}
    \Delta  = {\left( {\dfrac{{{v_o}^2}}{{gL}}} \right)^2} – \left( {\dfrac{{2h{v_o}^2}}{{g{L^2}}} + 1} \right) \ge 0\\
     \Leftrightarrow {\left( {\dfrac{{{v_o}^2}}{{gL}} – \dfrac{h}{L}} \right)^2} + 1 – \dfrac{{{h^2}}}{{{L^2}}} \ge 0\\
     \Leftrightarrow \dfrac{{{v_o}^2}}{{gL}} – \dfrac{h}{L} \ge \sqrt {\dfrac{{{h^2}}}{{{L^2}}} – 1} \\
     \Leftrightarrow {v_o} \ge \sqrt {g\left( {h – \sqrt {{h^2} – {L^2}} } \right)} \\
     \Rightarrow {v_{\min }} = \sqrt {g\left( {h – \sqrt {{h^2} – {L^2}} } \right)} 
    \end{array}$

    2. Góc cần ném là:

    $\begin{array}{l}
    \tan \alpha  = \dfrac{{{v_o}^2}}{{gL}} \pm \sqrt {{{\left( {\frac{{{v_o}^2}}{{gL}}} \right)}^2} – \left( {\dfrac{{2h{v_o}^2}}{{g{L^2}}} + 1} \right)}  = \dfrac{{g\left( {h – \sqrt {{h^2} – {L^2}} } \right)}}{{gL}} = \dfrac{{h – \sqrt {{h^2} – {L^2}} }}{L}\\
     \Rightarrow \alpha  = \arctan \left( {\dfrac{{h – \sqrt {{h^2} – {L^2}} }}{L}} \right)
    \end{array}$

     

Leave an answer

Browse

35:5x4+1-9:3 = ? ( )