Phương trình sin(x^2-5x)=-(√3)/2 có bao nhiêu nghiệm thuộc [0;π/2] ?????

Question

Phương trình sin(x^2-5x)=-(√3)/2 có bao nhiêu nghiệm thuộc [0;π/2] ?????

in progress 0
Ximena 4 tháng 2021-08-25T15:36:34+00:00 1 Answers 30 views 0

Answers ( )

    0
    2021-08-25T15:38:15+00:00

    Đáp án:

    $2$ nghiệm thuộc$\left[0;\dfrac{\pi}{2}\right]$

    Giải thích các bước giải:

    $sin(x^2 – 5x) = – \dfrac{\sqrt{3}}{2}$

    $\Leftrightarrow \left[\begin{array}{l}x^2 – 5x = -\dfrac{\pi}{3} + k2\pi \\x^2 – 5x = \dfrac{4\pi}{3} + k2\pi \end{array}\right. \, \, (k \in \Bbb Z)$

    Ta có:

    $x \in [0;\dfrac{\pi}{2}]$

    $\Leftrightarrow \begin{cases}0 \leq x^2 \leq \dfrac{\pi^2}{4} \\- \dfrac{5\pi}{2} \leq -5x \leq 0\end{cases}$

    $\Leftrightarrow -\dfrac{5\pi}{2} \leq x^2 – 5x \leq \dfrac{\pi^2}{4}$

    Với $\begin{cases}\left[\begin{array}{l}x^2 – 5x = -\dfrac{\pi}{6} + k2\pi \\x^2 – 5x = \dfrac{4\pi}{3} + k2\pi \end{array}\right.\\ -\dfrac{5\pi}{2} \leq x^2 – 5x \leq \dfrac{\pi^2}{4}\end{cases}\, \, (k \in \Bbb Z)$

    Ta được:

    $\left[\begin{array}{l}x^2 – 5x = -\dfrac{\pi}{3}\\x^2 – 5x = -\dfrac{7\pi}{3}\\x^2 – 5x =  -\dfrac{2\pi}{3}\end{array}\right.$

    $\Leftrightarrow \left[\begin{array}{l}x^2 – 5x + \dfrac{\pi}{3} = 0\\x^2 – 5x + \dfrac{7\pi}{3} = 0\\x^2 – 5x + \dfrac{2\pi}{3} = 0 \end{array}\right.$

    $\Leftrightarrow \left[\begin{array}{l}x \approx 0,21903 \, \, (nhận)\\x \approx 4,78103 \,\, (loại) \\x^2 – 5x + \dfrac{7\pi}{3} = 0 \, \, \text{vô nghiệm}\\x \approx 0,46147 \,\, (nhận)\\x \approx 4,5385 \,\, (loại) \end{array}\right.$

    Vậy phương trình đã cho có $2$ nghiệm thuộc $\left[0;\dfrac{\pi}{2}\right]$

Leave an answer

Browse

35:5x4+1-9:3 = ? ( )