Thả một cục nước đá có khối lượng 30 g ở 0 độ C vào cốc nước có chứa 0,2 lít nước ở 20 độ C bỏ qua nhiệt dung của cốc nhiệt dung riêng của nước 4,2 J/

Question

Thả một cục nước đá có khối lượng 30 g ở 0 độ C vào cốc nước có chứa 0,2 lít nước ở 20 độ C bỏ qua nhiệt dung của cốc nhiệt dung riêng của nước 4,2 J/g.K, khối lượng riêng của nước là 1 gam trên cm khối nhiệt nóng chảy của các nước là 334 J/kg nhiệt độ cuối của các nước là bao nhiêu

in progress 0
Margaret 3 tháng 2021-09-09T05:05:04+00:00 2 Answers 5 views 0

Answers ( )

    0
    2021-09-09T05:06:05+00:00

    Đáp án:

     \(t = 7,02^\circ C\)

    Giải thích các bước giải:

    Nhiệt dung riêng của nước là 4200J/kg.K và nhiệt nóng chảy của nước đá là \(3,{34.10^5}J/kg\) nha bạn.

    \(D = 1g/c{m^3} = 1000kg/{m^3}\)

    Khối lượng của nước là:

    \({m_1} = {V_1}D = 0,{2.10^3}.1000 = 0,2kg\)

    Nhiệt lượng nước tỏa ra để giảm về còn 0 độ C là:

    \({Q_1} = {m_1}{c_1}\Delta {t_1} = 0,2.4200(20 – 0) = 16800J\)

    Nhiệt lượng cần thiết để nóng chảy hết nước đá là:

    \({Q_2} = \lambda {m_2} = 3,{34.10^5}.0,03 = 10020J\)

    Vì \({Q_1} > {Q_2}\) nên nước đá tan hết.

    Nhiệt lượng nước tỏa ra là:

    \({Q_{toa}} = {m_1}{c_1}\Delta {t_1}’ = 0,2.4200(20 – t) = 840(20 – t)(J)\)

    Nhiệt lượng nước đá thu vào bằng nhiệt lượng nước thu vào để nóng chảy và để nóng lên đến t độ C:

    \({Q_{thu}} = {Q_2} + {m_2}{c_1}\Delta {t_2} = 10020 + 0,03.4200(t – 0) = 10020 + 126t(J)\)

    Vì nhiệt lượng tỏa ra bằng nhiệt lượng thu vào nên:

    \(\begin{array}{l}
    {Q_{toa}} = {Q_{thu}} \Rightarrow 840(20 – t) = 10020 + 126t\\
     \Rightarrow 966t = 6780\\
     \Rightarrow t = 7,02^\circ C
    \end{array}\)

    0
    2021-09-09T05:06:26+00:00

    Đáp án:

    nhiệt độ cuối cùng của nước là $t = 17,38^0C$

    Giải thích các bước giải:

     Nhiệt lượng cần thiết để làm nước đá tan chảy hết là:

    $Q_1 = \lambda.m = 334.0,03 = 10,02J$ 

    Nhiệt lượng nước toả ra khi hạ nhiệt độ xuống $0^0C$ là:

    $Q_2 = mc\Delta t = 0,2.4200.20 = 16800J$ 

    Vì $Q_2 > Q_1$ nên đá tan hết và tăng nhiệt độ lên cao hơn $0^0C$ . Gọi nhiệt độ cân bằng là t. 

    Nhiệt lượng cần để lượng nước đá tan ra tăng lên đến $t^0C$ là: 

    $Q_3 = m’c\Delta t = 0,03.4200t = 126t$
    Nhiệt lượng 0,2l nước toả ra khi hạ nhiệt độ là: 

    $Q_4 = mc\Delta t = 0,2.4200(20 – t) = 840(20 – t)$

    Ta có: $Q_1 + Q_3 = Q_4$ hay: 

    $10,02 + 126t = 840(20 – t)$ 

    $<=> t = 17,38$ 

    Vậy nhiệt độ cuối cùng của nước là $t = 17,38^0C$

Leave an answer

Browse

35:5x4+1-9:3 = ? ( )