Cho 2R: R1= 14, R2= 16 mắc nối tiếp:
a) tính Rtđ ?
b) Muốn R trong đoạn mạch có giá trị R’= 15 thì phải mắc thêm vào đoạn mạch R3 bằng bao nhiêu và mắc như thế nào ?
Cho 2R: R1= 14, R2= 16 mắc nối tiếp:
a) tính Rtđ ?
b) Muốn R trong đoạn mạch có giá trị R’= 15 thì phải mắc thêm vào đoạn mạch R3 bằng bao nhiêu và mắc như thế nào ?
Đáp án:
$\begin{array}{l}
a.{R_{td}} = 30\Omega \\
b.Th1:{R_3} = 1,067\Omega \\
Th2:{R_3} = 30\Omega
\end{array}$
Giải thích các bước giải:
a. VÌ R1ntR2 nên điện trở tương đương của toàn mạch là:
${R_{td}} = {R_1} + {R_2} = 14 + 16 = 30\Omega $
b. Vì R’ < R nên sẽ là cách mắc song song:
Th1: R1 nt ( R2 // R3 ) thì điện trở R3 có giá trị là:
$\begin{array}{l}
{R_{td}}’ = {R_1} + \dfrac{{{R_2}.{R_3}}}{{{R_2} + {R_3}}}\\
\Leftrightarrow 15 = 14 + \dfrac{{16.{R_3}}}{{16 + {R_3}}}\\
\Leftrightarrow \dfrac{{16{R_3}}}{{16 + {R_3}}} = 1\\
\Leftrightarrow 16{R_3} = 16 + {R_3}\\
\Leftrightarrow {R_3} = \dfrac{{16}}{{15}} = 1,067\Omega
\end{array}$
Th2: ( R1 nt R2 ) // R3 thi điện trở R3 có giá trị là:
$\begin{array}{l}
{R_{td}}’ = \dfrac{{\left( {{R_1} + {R_2}} \right).{R_3}}}{{{R_1} + {R_2} + {R_3}}}\\
\Leftrightarrow 15 = \dfrac{{\left( {14 + 16} \right).{R_3}}}{{14 + 16 + {R_3}}}\\
\Leftrightarrow 15 = \dfrac{{30{R_3}}}{{30 + {R_3}}}\\
\Leftrightarrow 450 + 15{R_3} = 30{R_3}\\
\Leftrightarrow 15{R_3} = 450 \Rightarrow {R_3} = \dfrac{{450}}{{15}} = 30\Omega
\end{array}$
Đáp án:
Giải thích các bước giải:
a) vì R1 nối tiếp R2 nên : Rtđ =R1+R2 =14+16=30
b) Để R’ =15 thì R3 phải mắc song song với R12
R’ =R12 * R3 / R12+ R3
⇒15 = 30*R3 / 30 +R3
⇒15 *(30 +R3) = 30 *R3
⇒450 +15*R3 = 30*R3
⇒15*R3 +30*R3= 450
⇒45*R3 = 450
⇒R3 = 450/45
⇒R3 =10