cho hệ hai vật khối lượng m1=m2=1kg. Vận tốc của 1 vật là v1=1m/s và vận tốc của vật 2 là v2=2m/s. Tính tổng động lượng của hệ khi:
a) v1 cùng chiều v2 b) v1 khác chiều với v2 c) v1 vuông góc v2 d) v1 hợp với v2 góc 60 độ
cho hệ hai vật khối lượng m1=m2=1kg. Vận tốc của 1 vật là v1=1m/s và vận tốc của vật 2 là v2=2m/s. Tính tổng động lượng của hệ khi:
a) v1 cùng chiều v2 b) v1 khác chiều với v2 c) v1 vuông góc v2 d) v1 hợp với v2 góc 60 độ
Đáp án:
$\begin{array}{l}
a.3\left( {kg.m/s} \right)\\
b.1\left( {kg.m/s} \right)\\
c.p = \sqrt 5 \left( {kg.m/s} \right)\\
d.p = \sqrt 7 \left( {kg.m/s} \right)
\end{array}$
Giải thích các bước giải:
$\begin{array}{l}
{p_1} = {m_1}{v_1} = 1\left( {kg.m/s} \right)\\
{p_2} = {m_2}{v_2} = 2\left( {kg.m/s} \right)\\
a.p = {p_1} + {p_2} = 3\left( {kg.m/s} \right)\\
b.p = \left| {{p_1} – {p_2}} \right| = 1\left( {kg.m/s} \right)\\
c.p = \sqrt {p_1^2 + p_2^2} = \sqrt 5 \left( {kg.m/s} \right)\\
d.p = \sqrt {p_1^2 + p_2^2 + 2{p_1}{p_2}\cos {{60}^0}} = \sqrt 7 \left( {kg.m/s} \right)
\end{array}$