Môn học: Toán Tiếng Anh Đề bài: Find a square number consists of 4 numbers knowing that the number consisting 2 first numbers is 1 unit greater than

Môn học: Toán Tiếng Anh
Đề bài: Find a square number consists of 4 numbers knowing that the number consisting 2 first numbers is 1 unit greater than the the number consisting of 2 second numbers.
Yêu cầu: Bắt buộc phải giải bằng tiếng anh nha.

0 bình luận về “Môn học: Toán Tiếng Anh Đề bài: Find a square number consists of 4 numbers knowing that the number consisting 2 first numbers is 1 unit greater than”

  1. Solution:

    $8281$

    Step by step solution:

    Let $\overline{abcd}$ be the giving square number.

    So it can be rewrite as $\overline{abcd}= k^2\quad (32 \leqslant k < 100)$

    Or: $1000a + 100b + 10c + d = k^2$

    In the other hand, we have:

    $\overline{ab} – \overline{cd}= 1$

    Or: $10a + b – (10c + d) = 1$

    Then we get:

    $1000a + 100b + 10c + d + 10a + b – (10c + d)= k^2 +1$

    It’s equal to: $\quad 1010a + 101b = k^2 + 1$

    Or: $\quad 101(10a + b) = k^2 + 1$

    It means: $\quad k^2 + 1\ \vdots\ 101$

    So that: $\quad k^2 + 101 – 100\ \vdots\ 101$

    Thus: $\quad k^2 – 100\ \vdots\ 101$

    Hence: $\quad (k-10)(k+10)\ \vdots\ 101$

    Because $\quad k – 10 < 101$

    Then: $\quad k + 10\ \vdots\ 101$

    Therefore: $\quad k = 91$

    We get: $\quad \overline{abcd}= 91^2 = 8281$

    Answer: $8281$

    Bình luận

Viết một bình luận