Môn học: Toán Tiếng Anh
Đề bài: Find a square number consists of 4 numbers knowing that the number consisting 2 first numbers is 1 unit greater than the the number consisting of 2 second numbers.
Yêu cầu: Bắt buộc phải giải bằng tiếng anh nha.
Môn học: Toán Tiếng Anh
Đề bài: Find a square number consists of 4 numbers knowing that the number consisting 2 first numbers is 1 unit greater than the the number consisting of 2 second numbers.
Yêu cầu: Bắt buộc phải giải bằng tiếng anh nha.
xin hay nhất
Solution:
$8281$
Step by step solution:
Let $\overline{abcd}$ be the giving square number.
So it can be rewrite as $\overline{abcd}= k^2\quad (32 \leqslant k < 100)$
Or: $1000a + 100b + 10c + d = k^2$
In the other hand, we have:
$\overline{ab} – \overline{cd}= 1$
Or: $10a + b – (10c + d) = 1$
Then we get:
$1000a + 100b + 10c + d + 10a + b – (10c + d)= k^2 +1$
It’s equal to: $\quad 1010a + 101b = k^2 + 1$
Or: $\quad 101(10a + b) = k^2 + 1$
It means: $\quad k^2 + 1\ \vdots\ 101$
So that: $\quad k^2 + 101 – 100\ \vdots\ 101$
Thus: $\quad k^2 – 100\ \vdots\ 101$
Hence: $\quad (k-10)(k+10)\ \vdots\ 101$
Because $\quad k – 10 < 101$
Then: $\quad k + 10\ \vdots\ 101$
Therefore: $\quad k = 91$
We get: $\quad \overline{abcd}= 91^2 = 8281$
Answer: $8281$