Viết ra công thức latex sau `\begin{vmatrix}a_{11}&a_{12}&a_{13}&a_{14}&a_{15}\\a_{21}&a_{22}&a_{23}&a_{24}&a_{25}\\a_{31}&a`_{32}&a_{33}&a_{34}&a_{35

Viết ra công thức latex sau
`\begin{vmatrix}a_{11}&a_{12}&a_{13}&a_{14}&a_{15}\\a_{21}&a_{22}&a_{23}&a_{24}&a_{25}\\a_{31}&a`_{32}&a_{33}&a_{34}&a_{35}\\a_{41}&a_{42}&a_{43}&a_{44}&a_{45}\\a_{51}&a_{52}&a_{53}&a_{54}&a_{55}\end{vmatrix} \Longleftarrow \curcearrowright \leftleftarrows \nwarrow \leadsto \circlearrowright \circlearrowleft \Longleftrightarrow \rightharpoondown \longrightarrow \leftleftarrows \leftleftarrows \looparrowright \mathbf{V}_1 \times \mathbf{V}_2 = \begin{vmatrix}\mathbf{i} & \mathbf{j} & \mathbf{k} \\\frac{\partial X}{\partial u} & \frac{\partial Y}{\partial u} & 0 \\\frac{\partial X}{\partial v} & `\frac{\partial Y}{\partial v} & 0\end{vmatrix} \left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right) P(E) = {n \choose k} p^k (1-p)^{ n-k} \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} =1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}}{1+\frac{e^{-8\pi}} {1+\ldots}} } } \begin{aligned} \dot{x} & = \sigma(y-x) \\ \dot{y} & = \rho x – y – xz \\ \dot{z} & = -\beta z + xy \end{aligned} \begin{aligned}\nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} & = \frac{4\pi}{c}\vec{\mathbf{j}} \\ \nabla \cdot \vec{\mathbf{E}} & = 4 \pi \rho \\\nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} & = \vec{\mathbf{0}} \\\nabla \cdot \vec{\mathbf{B}} & = 0 \end{aligned} \int_{a}^{b} f(x)dx = F(b) – F(a)`

0 bình luận về “Viết ra công thức latex sau `\begin{vmatrix}a_{11}&a_{12}&a_{13}&a_{14}&a_{15}\\a_{21}&a_{22}&a_{23}&a_{24}&a_{25}\\a_{31}&a`_{32}&a_{33}&a_{34}&a_{35”

  1. uses crt;
    var n,i,j,tam:longint;a:array[1..100]of longint;
    begin
    clrscr;
    readln(n);
    for i:=1 to n do
    readln(a[i]);
    for i:=1 to n do
    for j:=i to n do
    if(a[i]>a[j])then
    begin
    tam:=a[i];
    a[i]:=a[j];
    a[j]:=tam;
    end;
    for i:=1 to n do
    if(a[i]>0)then write(a[i],’ ‘);
    writeln;
    for i:=n downto 1 do
    if(a[i]<0)then write(a[i],’ ‘);
    readln;
    end.

    Bình luận

Viết một bình luận