0,05( $\frac{2x-2}{2009}$ + $\frac{2x}{2010}$ + $\frac{2x + 2}{2011}$ = 3,3 – ( $\frac{x – 1}{2009}$ + $\frac{x}{2010}$ + $\frac{x+1}{2011}$ ) Tìm

0,05( $\frac{2x-2}{2009}$ + $\frac{2x}{2010}$ + $\frac{2x + 2}{2011}$ = 3,3 – ( $\frac{x – 1}{2009}$ + $\frac{x}{2010}$ + $\frac{x+1}{2011}$ )
Tìm x

0 bình luận về “0,05( $\frac{2x-2}{2009}$ + $\frac{2x}{2010}$ + $\frac{2x + 2}{2011}$ = 3,3 – ( $\frac{x – 1}{2009}$ + $\frac{x}{2010}$ + $\frac{x+1}{2011}$ ) Tìm”

  1. Đáp án:

     Đặt `(x – 1)/2009 + x/2010 + (x + 1)/2011 = t`

    `pt <=> 0,1t = 3,3 – t`

    `<=> 0,1t + t = 3,3`

    `<=> 1,1t = 3,3`

    `<=> t = 3`

    `<=> (x – 1)/2009 + x/2010 + (x + 1)/2011 = 3`

    `<=> [(x – 1)/2009 – 1] + [ x/2010 – 1] + [ (x + 1)/2011 – 1] = 0`

    `<=> (x – 2010)/2009 + (x – 2010)/2010 + (x – 2010)/2011 = 0`

    `<=> (x – 2010)(1/2009 + 1/2010 + 1/2011) = 0`

    Do `1/2009 + 1/2010 + 1/2011 > 0`

    `<=> x – 2010 = 0`

    `<=> x = 2010`

    Vậy `pt` có nghiệm duy nhất là `x = 2010`

    Giải thích các bước giải:

     

    Bình luận
  2. Giải thích các bước giải:

    `0,05` ( $\frac{2x – 2}{2009}$ + $\frac{2x}{2010}$ + $\frac{2x}{2011}$ ) = `3,3` – ($\frac{x – 1}{2009}$ + $\frac{x}{2010}$ + $\frac{x + 1}{2011}$ )

    `<=>“0,1`( $\frac{x – 1}{2009}$ + $\frac{x}{2010}$ + $\frac{x + 1}{2011}$ ) + ( $\frac{x – 1}{2009}$ + $\frac{x}{2010}$ + $\frac{x + 1}{2011}$ ) = `3,3`

    `<=>“1,1`( $\frac{x – 1}{2009}$ + $\frac{x}{2010}$ + $\frac{x + 1}{2011}$ ) = `3,3`

    `<=>` $\frac{x – 1}{2009}$ + $\frac{x}{2010}$ + $\frac{x + 1}{2011}$ = `3`

    `<=>` $\frac{x – 1}{2009}$ + $\frac{x}{2010}$ + $\frac{x + 1}{2011}$ – `3` = `0`

    `<=>` ( $\frac{x – 1}{2009}$ – `1`) + ( $\frac{x}{2010}$ + `1` ) + ( $\frac{x + 1}{2011}$ + `1` ) = `0`

    `<=>` $\frac{x – 2010}{2009}$ + $\frac{x – 2010}{2010}$ + $\frac{x – 2010}{2011}$ = `0`

    `<=>` `( x- 2010 )`( $\frac{1}{2009}$ + $\frac{1}{2010}$ + $\frac{1}{2011}$ ) = `0`

    `<=>` ` x- 2010` = `0`

    `<=>` `x = 2010`

    ` Vậy ` `S` = `{ 2010 }`

     

    Bình luận

Viết một bình luận