0,05( $\frac{2x-2}{2009}$ + $\frac{2x}{2010}$ + $\frac{2x + 2}{2011}$ = 3,3 – ( $\frac{x – 1}{2009}$ + $\frac{x}{2010}$ + $\frac{x+1}{2011}$ )
Tìm x
0,05( $\frac{2x-2}{2009}$ + $\frac{2x}{2010}$ + $\frac{2x + 2}{2011}$ = 3,3 – ( $\frac{x – 1}{2009}$ + $\frac{x}{2010}$ + $\frac{x+1}{2011}$ )
Tìm x
Đáp án:
Đặt `(x – 1)/2009 + x/2010 + (x + 1)/2011 = t`
`pt <=> 0,1t = 3,3 – t`
`<=> 0,1t + t = 3,3`
`<=> 1,1t = 3,3`
`<=> t = 3`
`<=> (x – 1)/2009 + x/2010 + (x + 1)/2011 = 3`
`<=> [(x – 1)/2009 – 1] + [ x/2010 – 1] + [ (x + 1)/2011 – 1] = 0`
`<=> (x – 2010)/2009 + (x – 2010)/2010 + (x – 2010)/2011 = 0`
`<=> (x – 2010)(1/2009 + 1/2010 + 1/2011) = 0`
Do `1/2009 + 1/2010 + 1/2011 > 0`
`<=> x – 2010 = 0`
`<=> x = 2010`
Vậy `pt` có nghiệm duy nhất là `x = 2010`
Giải thích các bước giải:
Giải thích các bước giải:
`0,05` ( $\frac{2x – 2}{2009}$ + $\frac{2x}{2010}$ + $\frac{2x}{2011}$ ) = `3,3` – ($\frac{x – 1}{2009}$ + $\frac{x}{2010}$ + $\frac{x + 1}{2011}$ )
`<=>“0,1`( $\frac{x – 1}{2009}$ + $\frac{x}{2010}$ + $\frac{x + 1}{2011}$ ) + ( $\frac{x – 1}{2009}$ + $\frac{x}{2010}$ + $\frac{x + 1}{2011}$ ) = `3,3`
`<=>“1,1`( $\frac{x – 1}{2009}$ + $\frac{x}{2010}$ + $\frac{x + 1}{2011}$ ) = `3,3`
`<=>` $\frac{x – 1}{2009}$ + $\frac{x}{2010}$ + $\frac{x + 1}{2011}$ = `3`
`<=>` $\frac{x – 1}{2009}$ + $\frac{x}{2010}$ + $\frac{x + 1}{2011}$ – `3` = `0`
`<=>` ( $\frac{x – 1}{2009}$ – `1`) + ( $\frac{x}{2010}$ + `1` ) + ( $\frac{x + 1}{2011}$ + `1` ) = `0`
`<=>` $\frac{x – 2010}{2009}$ + $\frac{x – 2010}{2010}$ + $\frac{x – 2010}{2011}$ = `0`
`<=>` `( x- 2010 )`( $\frac{1}{2009}$ + $\frac{1}{2010}$ + $\frac{1}{2011}$ ) = `0`
`<=>` ` x- 2010` = `0`
`<=>` `x = 2010`
` Vậy ` `S` = `{ 2010 }`