0 bình luận về “(1-1/(x+1))(1-1/(x+2))(1-1/(x+3))…(1-1/x+(2019))”
`~rai~`
$\begin{array}{I}\left(1-\dfrac{1}{x+1}\right)\left(1-\dfrac{1}{x+2}\right)\left(1-\dfrac{1}{x+3}\right)\cdots\left(1-\dfrac{1}{x+2019}\right)\quad(1)\\\text{Giả sử các phân thức đã cho đều có nghĩa thì:}\\(1)=\dfrac{x+1-1}{x+1}.\dfrac{x+2-1}{x+2}.\dfrac{x+3-1}{x+3}\cdots\dfrac{x+2019-1}{x+2019}\\=\dfrac{x}{x+1}.\dfrac{x+1}{x+2}.\dfrac{x+2}{x+3}\cdots\dfrac{x+2018}{x+2019}\\=\dfrac{x}{x+2019}.\end{array}$
`~rai~`
$\begin{array}{I}\left(1-\dfrac{1}{x+1}\right)\left(1-\dfrac{1}{x+2}\right)\left(1-\dfrac{1}{x+3}\right)\cdots\left(1-\dfrac{1}{x+2019}\right)\quad(1)\\\text{Giả sử các phân thức đã cho đều có nghĩa thì:}\\(1)=\dfrac{x+1-1}{x+1}.\dfrac{x+2-1}{x+2}.\dfrac{x+3-1}{x+3}\cdots\dfrac{x+2019-1}{x+2019}\\=\dfrac{x}{x+1}.\dfrac{x+1}{x+2}.\dfrac{x+2}{x+3}\cdots\dfrac{x+2018}{x+2019}\\=\dfrac{x}{x+2019}.\end{array}$
Đáp án:
$\dfrac{x}{x+2019}$
Giải thích các bước giải:
$\left(1-\dfrac{1}{x+1}\right)\left(1-\dfrac{1}{x+2}\right)\left(1-\dfrac{1}{x+3}\right)\cdot\left(1-\dfrac{1}{x+2019}\right)\qquad (*)$
Giả sử tất cả phân thức đã cho đều có nghĩa
$(*)= \dfrac{x+1-1}{x+1}\cdot\dfrac{x+2-1}{x+2}\cdot\dfrac{x+3-1}{x+3}\cdots\dfrac{x+2019-1}{x + 2019}$
$= \dfrac{x}{x+1}\cdot\dfrac{x+1}{x+2}\cdot\dfrac{x+2}{x+3}\cdots\dfrac{x+2018}{x + 2019}$
$=\dfrac{x}{x+2019}$