x-1/x+1/x+1=2x-1/x^2+x c,x+1/x-1-x-1/x+1=16/x^2-1 d,1+x/3-x=5x/(x+2)(3-x)+2/x+2

x-1/x+1/x+1=2x-1/x^2+x
c,x+1/x-1-x-1/x+1=16/x^2-1
d,1+x/3-x=5x/(x+2)(3-x)+2/x+2

0 bình luận về “x-1/x+1/x+1=2x-1/x^2+x c,x+1/x-1-x-1/x+1=16/x^2-1 d,1+x/3-x=5x/(x+2)(3-x)+2/x+2”

  1. $#Dino$

    `c) (x+1)/(x-1)-(x-1)/(x+1)=16/(x²-1)`

    `ĐKXĐ: x`$\neq$ `±1`

    `⇔((x+1)²)/(x²-1)-((x-1)²)/(x²-1)=16/(x²-1)`

    `⇔(x+1)²-(x-1)²=16`

    `⇔x²+2x+1-x²+2x-1=16`

    `⇔4x=16`

    `⇔x=4`

    Vậy `S={4}`

    `d)(1+x)/(3-x)=(5x)/((x+2)(3-x))+2/(x+2)`

    `ĐKXĐ: x`$\neq$ `3;x`$\neq$ `-2`

    `⇔((x+2)(1+x))/((x+2)(3-x))=(5x)/((x+2)(3-x))+(2(3-x))/((x+2)(3-x))`

    `⇒(x+2)(1+x)=5x+2(3-x)`

    `⇔x+x²+2+2x=5x+6-2x`

    `⇔x²+2x+2x+x-5x-6+2=0`

    `⇔x²-4=0`

    `⇔(x-2)(x+2)=0`

    `1)x-2=0⇔x=2`

    `2)x+2=0⇔x=-2`

    Vậy `S={±2}`

    Bình luận

Viết một bình luận