1/1.2+1/3.4+1/5.6+…+1/49.50=1/26+1/27+…+1/50 01/10/2021 Bởi Margaret 1/1.2+1/3.4+1/5.6+…+1/49.50=1/26+1/27+…+1/50
`1/1.2 + 1/3.4 + 1/5.6 +…+ 1/49.50` `= 1 -1/2 + 1/3 -1/4 + 1/5- 1/6 +…+ 1/49 -1/50` `= (1 + 1/3 + 1/5 +…+ 1/49) – ( 1/2 + 1/4 + 1/6+…+1/50)` `= (1+ 1/2 + 1/3 + 1/4+…+ 1/49 + 1/50) – 2(1/2 + 1/4 +…+1/50)` `=1 + 1/2 + 1/3 + 1/4 +…+1/50 – 1 – 1/2 – …- 1/25` `=1/26 + 1/27 + 1/28 +…+ 1/50` Bình luận
1/1.2+1/3.4+….+1/49.50=(2-1)/1.2+(4-3)/3.4+….+(50-49)/50.49=1-1/2+1/3-….-1/50=(1+1/3+1/5+….+1/49)-(1/2+1/4+…+1/50)=(1+1/2+1/3+….+1/50)-2(1/2+1/4+….+1/50)=(1+1/2+….+1/50)-(1+1/2+1/3+….+1/25)=1/26+1/27+….+1/50 Bình luận
`1/1.2 + 1/3.4 + 1/5.6 +…+ 1/49.50`
`= 1 -1/2 + 1/3 -1/4 + 1/5- 1/6 +…+ 1/49 -1/50`
`= (1 + 1/3 + 1/5 +…+ 1/49) – ( 1/2 + 1/4 + 1/6+…+1/50)`
`= (1+ 1/2 + 1/3 + 1/4+…+ 1/49 + 1/50) – 2(1/2 + 1/4 +…+1/50)`
`=1 + 1/2 + 1/3 + 1/4 +…+1/50 – 1 – 1/2 – …- 1/25`
`=1/26 + 1/27 + 1/28 +…+ 1/50`
1/1.2+1/3.4+….+1/49.50=(2-1)/1.2+(4-3)/3.4+….+(50-49)/50.49=1-1/2+1/3-….-1/50=(1+1/3+1/5+….+1/49)-(1/2+1/4+…+1/50)=(1+1/2+1/3+….+1/50)-2(1/2+1/4+….+1/50)=(1+1/2+….+1/50)-(1+1/2+1/3+….+1/25)=1/26+1/27+….+1/50