`1/(x-1) + 2/(x-2) + 3/(x-3) = 6/(x-6)` Giải dùm cái pt (xàm hơn cả MV mới của chỵ gái truyền nhân của Chipu) với :v 27/10/2021 Bởi Parker `1/(x-1) + 2/(x-2) + 3/(x-3) = 6/(x-6)` Giải dùm cái pt (xàm hơn cả MV mới của chỵ gái truyền nhân của Chipu) với :v
Đáp án: $\dfrac{1}{x-1} +\dfrac{2}{x-2} +\dfrac{3}{x-3}=\dfrac{6}{x-6}$ $\text{ĐKXĐ : $x \neq 1 ; x \neq 2 ; x \neq 3 ; x \neq 6$}$ $⇔(x-6)(x-2)(x-3) +2(x-1)(x-3)(x-6) +3(x-1)(x-2)(x-6) = 6(x-1)(x-2)(x-3)$ $⇔x^3 -11x^2+36x -36 +2x^3 -20x^2+54x -36 +3x^3 -27x^2 +60x -36 =6x^3 -36x^2+66x-36$ $⇔x^3 +2x^3 +3x^3 -6x^3 -11x^2 -20x^2 -27x^2 +36x^2 +36x +54x +60x -66x -36 -36-36+36=0$ $⇔-22x^2 +84x -72=0$ $⇔22x^2 -84x +72=0$ $⇔[(\sqrt[]{22}x)^2- 2. \sqrt[]{22}x . \dfrac{21\sqrt[]{22}}{11}+ (\dfrac{21\sqrt[]{22}}{11})^2] -\dfrac{90}{11}=0$ $⇔(\sqrt[]{22}x -\dfrac{21\sqrt[]{22}}{11})^2 -(\sqrt[]{\dfrac{90}{11}})^2 =0$ $⇔(\sqrt[]{22}x -\dfrac{21\sqrt[]{22}}{11} -\sqrt[]{\dfrac{90}{11}}).(\sqrt[]{22}x -\dfrac{21\sqrt[]{22}}{11}+\sqrt[]{\dfrac{90}{11}})=0$ $⇔$\(\left[ \begin{array}{l}\sqrt[]{22}x-\dfrac{21\sqrt[]{22}}{11}-\sqrt[]{\dfrac{90}{11}}=0\\\sqrt[]{22}x-\dfrac{21\sqrt[]{22}}{11}+\sqrt[]{\dfrac{90}{11}}=0\end{array} \right.\) $⇔$\(\left[ \begin{array}{l}x=\dfrac{21+3\sqrt[]{5}}{11}(chọn)\\x=\dfrac{21-3\sqrt[]{5}}{11}(chọn)\end{array} \right.\) $\text{Vậy phương trình có tập nghiệm S={$\dfrac{21+3\sqrt[]{5}}{11} ; \dfrac{21-3\sqrt[]{5}}{11}$}}$ Bình luận
Điều kiện: $\begin{cases}x-1\ne0\\x-2\ne0\\x-3\ne0\\x-6\ne0\end{cases}⇔\begin{cases}x\ne1\\x\ne2\\x\ne3\\x\ne6\end{cases}$ $\dfrac{1}{x-1}+\dfrac{2}{x-2}+\dfrac{3}{x-3}=\dfrac{6}{x-6}$$⇔\dfrac{(x-2)(x-3)(x-6)}{(x-1)(x-2)(x-3)(x-6)}+\dfrac{2(x-1)(x-3)(x-6)}{(x-1)(x-2)(x-3)(x-6)}+\dfrac{3(x-1)(x-2)(x-6)}{(x-1)(x-2)(x-3)(x-6)}=\dfrac{6(x-1)(x-2)(x-3)}{(x-1)(x-2)(x-3)}$ $⇔(x-2)(x-3)(x-6)+2(x-1)(x-3)(x-6)+3(x-1)(x-2)(x-6)=6(x-1)(x-2)(x-3)$$⇔x^3-6x^2-5x^2+30x+6x-36+2x^3-12x^2-8x^2+48x+6x-36+3x^3-18x^2-9x^2+54x+6x-36=6x^3-18x^2-18x^2+54x+12x-36$$⇔22x^2-84x+72=0$$Δ’=(-42)^2-22.72=180$$\to \sqrt{Δ’}=6\sqrt{5}$ $\to$$x_1=\dfrac{-b’-\sqrt{Δ’}}{a}=\dfrac{42-6\sqrt5}{22}=\dfrac{21-3\sqrt5}{11}$ $x_2=\dfrac{-b’+\sqrt{Δ’}}{a}=\dfrac{42+6\sqrt{5}}{22}=\dfrac{21+3\sqrt5}{11}$Vậy phương trình có tập nghiệm `S={(21-3sqrt5)/11;(21+3sqrt5)/11}` Bình luận
Đáp án:
$\dfrac{1}{x-1} +\dfrac{2}{x-2} +\dfrac{3}{x-3}=\dfrac{6}{x-6}$
$\text{ĐKXĐ : $x \neq 1 ; x \neq 2 ; x \neq 3 ; x \neq 6$}$
$⇔(x-6)(x-2)(x-3) +2(x-1)(x-3)(x-6) +3(x-1)(x-2)(x-6) = 6(x-1)(x-2)(x-3)$
$⇔x^3 -11x^2+36x -36 +2x^3 -20x^2+54x -36 +3x^3 -27x^2 +60x -36 =6x^3 -36x^2+66x-36$
$⇔x^3 +2x^3 +3x^3 -6x^3 -11x^2 -20x^2 -27x^2 +36x^2 +36x +54x +60x -66x -36 -36-36+36=0$
$⇔-22x^2 +84x -72=0$
$⇔22x^2 -84x +72=0$
$⇔[(\sqrt[]{22}x)^2- 2. \sqrt[]{22}x . \dfrac{21\sqrt[]{22}}{11}+ (\dfrac{21\sqrt[]{22}}{11})^2] -\dfrac{90}{11}=0$
$⇔(\sqrt[]{22}x -\dfrac{21\sqrt[]{22}}{11})^2 -(\sqrt[]{\dfrac{90}{11}})^2 =0$
$⇔(\sqrt[]{22}x -\dfrac{21\sqrt[]{22}}{11} -\sqrt[]{\dfrac{90}{11}}).(\sqrt[]{22}x -\dfrac{21\sqrt[]{22}}{11}+\sqrt[]{\dfrac{90}{11}})=0$
$⇔$\(\left[ \begin{array}{l}\sqrt[]{22}x-\dfrac{21\sqrt[]{22}}{11}-\sqrt[]{\dfrac{90}{11}}=0\\\sqrt[]{22}x-\dfrac{21\sqrt[]{22}}{11}+\sqrt[]{\dfrac{90}{11}}=0\end{array} \right.\)
$⇔$\(\left[ \begin{array}{l}x=\dfrac{21+3\sqrt[]{5}}{11}(chọn)\\x=\dfrac{21-3\sqrt[]{5}}{11}(chọn)\end{array} \right.\)
$\text{Vậy phương trình có tập nghiệm S={$\dfrac{21+3\sqrt[]{5}}{11} ; \dfrac{21-3\sqrt[]{5}}{11}$}}$
Điều kiện: $\begin{cases}x-1\ne0\\x-2\ne0\\x-3\ne0\\x-6\ne0\end{cases}⇔\begin{cases}x\ne1\\x\ne2\\x\ne3\\x\ne6\end{cases}$
$\dfrac{1}{x-1}+\dfrac{2}{x-2}+\dfrac{3}{x-3}=\dfrac{6}{x-6}$
$⇔\dfrac{(x-2)(x-3)(x-6)}{(x-1)(x-2)(x-3)(x-6)}+\dfrac{2(x-1)(x-3)(x-6)}{(x-1)(x-2)(x-3)(x-6)}+\dfrac{3(x-1)(x-2)(x-6)}{(x-1)(x-2)(x-3)(x-6)}=\dfrac{6(x-1)(x-2)(x-3)}{(x-1)(x-2)(x-3)}$
$⇔(x-2)(x-3)(x-6)+2(x-1)(x-3)(x-6)+3(x-1)(x-2)(x-6)=6(x-1)(x-2)(x-3)$
$⇔x^3-6x^2-5x^2+30x+6x-36+2x^3-12x^2-8x^2+48x+6x-36+3x^3-18x^2-9x^2+54x+6x-36=6x^3-18x^2-18x^2+54x+12x-36$
$⇔22x^2-84x+72=0$
$Δ’=(-42)^2-22.72=180$
$\to \sqrt{Δ’}=6\sqrt{5}$
$\to$
$x_1=\dfrac{-b’-\sqrt{Δ’}}{a}=\dfrac{42-6\sqrt5}{22}=\dfrac{21-3\sqrt5}{11}$
$x_2=\dfrac{-b’+\sqrt{Δ’}}{a}=\dfrac{42+6\sqrt{5}}{22}=\dfrac{21+3\sqrt5}{11}$
Vậy phương trình có tập nghiệm `S={(21-3sqrt5)/11;(21+3sqrt5)/11}`