1/1x2x3 + 1/2x3x4 + 1/3x4x5 + … + 1/2018x2019x2020

1/1x2x3 + 1/2x3x4 + 1/3x4x5 + … + 1/2018x2019x2020

0 bình luận về “1/1x2x3 + 1/2x3x4 + 1/3x4x5 + … + 1/2018x2019x2020”

  1. $\dfrac{1}{1.2.3} + \dfrac{1}{2.3.4} + \dfrac{1}{3.4.5} + …. + \dfrac{1}{2018.2019.2020}$

    $= \dfrac{1}{1.2} – \dfrac{1}{2.3} + \dfrac{1}{2.3} – \dfrac{1}{3.4} + \dfrac{1}{3.4} – \dfrac{1}{4.5} + …. + \dfrac{1}{2018.2019} – \dfrac{1}{2019.2020}$

    $= \dfrac{1}{2} – \dfrac{1}{4078380}$

    $=  \dfrac{2039189}{4078380}$

    Bình luận
  2. Đặt A=1/1x2x3 + 1/2x3x4 + 1/3x4x5 + … + 1/2018x2019x2020

    ⇒ 2A = 2/1x2x3 + 2/2x3x4 + 2/3x4x5 + … + 2/2018x2019x2020

    ⇒  2A= -1/1×2 + 1/2×3 – 1/2×3 +1/3×4 – 1/3×4 + 1/4×5  + … -1/2018×2019 + 1/2019×2020

     ⇒ 2A = -1/1×2 + 1/2019×2020

          A = 2039189/4078380

           

    Bình luận

Viết một bình luận