(x-1) ×(x+2)-x-2=0 x(3x+2)+(x+1) ² – (2x+5)(2x-5)=0 (4x+1)(x-2) -(2x-3)(2x+1)=7

(x-1) ×(x+2)-x-2=0
x(3x+2)+(x+1) ² – (2x+5)(2x-5)=0
(4x+1)(x-2) -(2x-3)(2x+1)=7

0 bình luận về “(x-1) ×(x+2)-x-2=0 x(3x+2)+(x+1) ² – (2x+5)(2x-5)=0 (4x+1)(x-2) -(2x-3)(2x+1)=7”

  1. $\begin{array}{l}
     + )\,\,\left( {x – 1} \right).\left( {x + 2} \right) – x – 2 = 0\\
     \Leftrightarrow \left( {x – 1} \right).\left( {x + 2} \right) – \left( {x + 2} \right) = 0\\
     \Leftrightarrow \left( {x + 2} \right).\left( {x – 1 – 1} \right) = 0\\
     \Leftrightarrow \left( {x + 2} \right)\left( {x – 2} \right) = 0\\
     \Leftrightarrow \left[ \begin{array}{l}
    x + 2 = 0\\
    x – 2 = 0
    \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
    x =  – 2\\
    x = 2
    \end{array} \right.\\
     + )\,\,x\left( {3x + 2} \right) + {\left( {x + 1} \right)^2} – \left( {2x + 5} \right)\left( {2x – 5} \right) = 0\\
     \Leftrightarrow 3{x^2} + 2x + {x^2} + 2x + 1 – \left( {4{x^2} – 25} \right) = 0\\
     \Leftrightarrow 4{x^2} + 4x + 1 – 4{x^2} + 25 = 0\\
     \Leftrightarrow 4x + 26 = 0\\
     \Leftrightarrow 4x =  – 26\\
     \Leftrightarrow x = \frac{{ – 13}}{2}\\
     + )\,\left( {4x + 1} \right)\left( {x – 2} \right) – \left( {2x – 3} \right)\left( {2x + 1} \right) = 7\\
     \Leftrightarrow \left( {4{x^2} – 8x + x – 2} \right) – \left( {4{x^2} + 2x – 6x – 3} \right) – 7 = 0\\
     \Leftrightarrow \left( {4{x^2} – 7x – 2} \right) – \left( {4{x^2} – 4x – 3} \right) – 7 = 0\\
     \Leftrightarrow 4{x^2} – 7x – 2 – 4{x^2} + 4x + 3 – 7 = 0\\
     \Leftrightarrow  – 3x – 6 = 0\\
     \Leftrightarrow  – 3x = 6\\
     \Leftrightarrow x =  – 2
    \end{array}$

    Bình luận

Viết một bình luận