(1+2+3+…+100).(1/2 – 1/3 – 1/7 -1/9).(63.1,2-21.3,6) / 1-2+3-4+…+99-100 Dấu / là phân số nhé. 29/09/2021 Bởi Emery (1+2+3+…+100).(1/2 – 1/3 – 1/7 -1/9).(63.1,2-21.3,6) / 1-2+3-4+…+99-100 Dấu / là phân số nhé.
Tham khảo Đặt $A=\dfrac{(1+2+3+….+100).(\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{9}).(63.1,2-21.3,6)}{1-2+3-4+…+99-100}$ $⇒A=\dfrac{(1+2+3+….+100).(\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{9}).0}{1-2+3-4+…+99-100}$ $⇒A=\dfrac{0}{1-2+3-4+…+99-100}$ $⇒A=0$ `\text{©CBT}` Bình luận
Đáp án: `((1+2+3+…+100).(1/2 – 1/3 – 1/7 -1/9).(63.1,2-21.3,6) )/ (1-2+3-4+…+99-100)` `=((1+2+3+…+100).(1/2 – 1/3 – 1/7 -1/9).(75,6-75,6) )/ (1-2+3-4+…+99-100)` `=((1+2+3+…+100).(1/2 – 1/3 – 1/7 -1/9).0 )/ (1-2+3-4+…+99-100)` `=0` Bình luận
Tham khảo
Đặt $A=\dfrac{(1+2+3+….+100).(\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{9}).(63.1,2-21.3,6)}{1-2+3-4+…+99-100}$
$⇒A=\dfrac{(1+2+3+….+100).(\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{9}).0}{1-2+3-4+…+99-100}$
$⇒A=\dfrac{0}{1-2+3-4+…+99-100}$
$⇒A=0$
`\text{©CBT}`
Đáp án:
`((1+2+3+…+100).(1/2 – 1/3 – 1/7 -1/9).(63.1,2-21.3,6) )/ (1-2+3-4+…+99-100)`
`=((1+2+3+…+100).(1/2 – 1/3 – 1/7 -1/9).(75,6-75,6) )/ (1-2+3-4+…+99-100)`
`=((1+2+3+…+100).(1/2 – 1/3 – 1/7 -1/9).0 )/ (1-2+3-4+…+99-100)`
`=0`