|x-1|=|2|+|-6| 3/4+ |x-5/2| = 1/4 3/2-|x-2/3| = 4/3 |x-2|= |-1/2| + |-3/4|

|x-1|=|2|+|-6|
3/4+ |x-5/2| = 1/4
3/2-|x-2/3| = 4/3
|x-2|= |-1/2| + |-3/4|

0 bình luận về “|x-1|=|2|+|-6| 3/4+ |x-5/2| = 1/4 3/2-|x-2/3| = 4/3 |x-2|= |-1/2| + |-3/4|”

  1.  | x-1 | = |2| + | -6 |

     | x-1 | = 2+ 6

     | x-1 | = 8

    => x-1 = 8 hoặc x -1 = -8

          x = 8 + 1        x = (-8 ) + 1

          x = 9                x = ( -7 )

    vậy x ∈ { 9 ; -7 }

    3/4 + | x – 5/2 | = 1/4 

    | x – 5/2 | = 1/4 – 3/4 

    | x – 5/2 | = -1/2

    vì | x – 5/2 | ≥  0 mà -1/2 < 0

    => x ∈ ∅

    Vậy x ∈ ∅

    3/2 – | x -2/3 | = 4/3 

    | x – 2/3 | = 3/2 – 4/3

    | x – 2/3 | = 1/6

    => x – 2/3 = 1/6 hoặc x – 2/3 = -1/6

          x = 1/6 + 2/3          x = -1/6 + 2/3

          x = 5/6                     x = 1/2

    vậy x ∈ { 5/6 ; 1/2}

    | x – 2 | = | -1/2 | + | -3/4 |

    | x – 2 | = 1/2 + 3/4

    | x- 2 | = 5/4

    => x – 2 = 5/4 hoặc x – 2 = -5/4

          x =  5/4 + 2        x = -5/4 + 2 

          x = 13/4              x = 3/4

    vậy x ∈ { 3/4 ; 13/4 }

     

    Bình luận
  2. Đáp án:

     

    Giải thích các bước giải:

     `|x- 1|= |2|+ |-6|`

    `|x+ 1|= -2+ 6`

    `|x+ 1|= 4`

    `⇒ |x+ 1|= ±4`

    `Th1: x+ 1= -4`

    `x= -4- 1`

    `x= -5`

    `Th2: x+ 1= 4`

    `x= 4- 1`

    `x= 3`

    Vậy `x∈ \text{{-5; 3}}`

    `3/4+ |x- 5/2|= 1/4`

    `|x- 5/2|= 1/4- 3/4`

    `|x- 5/2|= -1/2`

    `x- 5/2= -1/2`

    `x=  -1/2+ 5/2`

    `x= 4/2= 2`

    `3/2- |x- 2/3|= 4/3`

    `|x- 2/3|= 4/3+ 3/2`

    `|x- 2/3|= 8/6+ 9/6`

    `|x- 2/3|= 17/6`

    `|x+ 2/3|= ±17/6`

    `Th1: x+ 2/3= 17/6`

    `x= 17/6- 2/3`

    `x= 17/6- 4/6`

    `x= 13/6`

    `Th2: x+ 2/3= -17/6`

    `x= -17/6- 2/3`

    `x= -17/6+ 4/6`

    `x= -13/6`

    Vậy `x∈ \text{{-13/6; 13/6}}`

    `|x- 2|= |-1/2|+ |-3/4|`

    `|x- 2|= 1/2+ 3/4`

    `|x- 2|= 2/4+ 3/4`

    `|x- 2|= 5/4`

    `⇒ |x- 2|= ±5/4`

    `Th1: x- 2= 5/4`

    `x= 5/4+ 2`

    `x= 5/4+ 8/4`

    `x= 13/4`

    `Th2: x- 2= -5/4`

    `x= -5/4+ 2`

    `x= -5/4+ 8/4`

    `x= 3/4`

    Vậy `x∈ \text{{3/4; 13/4}}`

    Bình luận

Viết một bình luận