1/ |2x-8|=x+2 2/ |x-3|=|2x-1| 3/ -2x^2+|x+2|-2>=0 4/|2x-1| 6x-3 22/09/2021 Bởi Brielle 1/ |2x-8|=x+2 2/ |x-3|=|2x-1| 3/ -2x^2+|x+2|-2>=0 4/|2x-1| 6x-3
Đáp án: 5) \(x \in \left[ {\dfrac{1}{2};1} \right)\) Giải thích các bước giải: \(\begin{array}{l}1)\left| {2x – 8} \right| = x + 2\\ \to \left[ \begin{array}{l}2x – 8 = x + 2\\2x – 8 = – x – 2\end{array} \right.\\ \to \left[ \begin{array}{l}x = 10\\3x = 6\end{array} \right.\\ \to \left[ \begin{array}{l}x = 10\\x = 2\end{array} \right.\\2)\left| {x – 3} \right| = \left| {2x – 1} \right|\\ \to \left[ \begin{array}{l}x – 3 = 2x – 1\\x – 3 = – 2x + 1\end{array} \right.\\ \to \left[ \begin{array}{l}x = – 2\\3x = 4\end{array} \right.\\ \to \left[ \begin{array}{l}x = – 2\\x = \dfrac{4}{3}\end{array} \right.\\3)\left| {x + 2} \right| \ge 2{x^2} + 2\\ \to \left[ \begin{array}{l}x + 2 \ge 2{x^2} + 2\\x + 2 \le – 2{x^2} – 2\end{array} \right.\\ \to \left[ \begin{array}{l}2{x^2} – x \le 0\\2{x^2} + x + 4 \le 0\left( {vô lý} \right)\end{array} \right.\\ \to x \in \left[ {0;\dfrac{1}{2}} \right]\\4)\left| {2x – 1} \right| < x + 2\\ \to 4{x^2} – 4x + 1 < {x^2} + 4x + 4\\ \to 3{x^2} – 8x – 3 < 0\\ \to x \in \left( { – \dfrac{1}{3};3} \right)\\5)\sqrt {8 + 2x – {x^2}} > 6x – 3\\ \to \left\{ \begin{array}{l}6x – 3 \ge 0\\8 + 2x – {x^2} > 36{x^2} – 36x + 9\end{array} \right.\\ \to \left\{ \begin{array}{l}x \ge \dfrac{1}{2}\\x \in \left( {\dfrac{1}{{37}};1} \right)\end{array} \right.\\ \to x \in \left[ {\dfrac{1}{2};1} \right)\end{array}\) Bình luận
Đáp án:
5) \(x \in \left[ {\dfrac{1}{2};1} \right)\)
Giải thích các bước giải:
\(\begin{array}{l}
1)\left| {2x – 8} \right| = x + 2\\
\to \left[ \begin{array}{l}
2x – 8 = x + 2\\
2x – 8 = – x – 2
\end{array} \right.\\
\to \left[ \begin{array}{l}
x = 10\\
3x = 6
\end{array} \right.\\
\to \left[ \begin{array}{l}
x = 10\\
x = 2
\end{array} \right.\\
2)\left| {x – 3} \right| = \left| {2x – 1} \right|\\
\to \left[ \begin{array}{l}
x – 3 = 2x – 1\\
x – 3 = – 2x + 1
\end{array} \right.\\
\to \left[ \begin{array}{l}
x = – 2\\
3x = 4
\end{array} \right.\\
\to \left[ \begin{array}{l}
x = – 2\\
x = \dfrac{4}{3}
\end{array} \right.\\
3)\left| {x + 2} \right| \ge 2{x^2} + 2\\
\to \left[ \begin{array}{l}
x + 2 \ge 2{x^2} + 2\\
x + 2 \le – 2{x^2} – 2
\end{array} \right.\\
\to \left[ \begin{array}{l}
2{x^2} – x \le 0\\
2{x^2} + x + 4 \le 0\left( {vô lý} \right)
\end{array} \right.\\
\to x \in \left[ {0;\dfrac{1}{2}} \right]\\
4)\left| {2x – 1} \right| < x + 2\\
\to 4{x^2} – 4x + 1 < {x^2} + 4x + 4\\
\to 3{x^2} – 8x – 3 < 0\\
\to x \in \left( { – \dfrac{1}{3};3} \right)\\
5)\sqrt {8 + 2x – {x^2}} > 6x – 3\\
\to \left\{ \begin{array}{l}
6x – 3 \ge 0\\
8 + 2x – {x^2} > 36{x^2} – 36x + 9
\end{array} \right.\\
\to \left\{ \begin{array}{l}
x \ge \dfrac{1}{2}\\
x \in \left( {\dfrac{1}{{37}};1} \right)
\end{array} \right.\\
\to x \in \left[ {\dfrac{1}{2};1} \right)
\end{array}\)