1,`x^2+9x+20=2sqrt{3x+10}` 2,`8x^2-3x+6=4xsqrt{3x^2+x+2}` giải pt vô tỉ :)) 31/08/2021 Bởi Jasmine 1,`x^2+9x+20=2sqrt{3x+10}` 2,`8x^2-3x+6=4xsqrt{3x^2+x+2}` giải pt vô tỉ :))
a)ĐKXĐ:`x≥-10/3` `x^2+9x+20=2\sqrt{3x+10}` `⇔x^2+6x+9+3x+10-2\sqrt{3x+10}+1=0` `⇔(x+3)^2+(\sqrt{3x+10)-1)^2=0` `⇔`$\left \{ {{x+3=0} \atop {\sqrt{3x+10}-1=0}} \right.$ `⇔`$\left \{ {{x=-3} \atop {3x+10=1}} \right.$ `⇔`$\left \{ {{x=-3} \atop {x=-3}} \right.$ Vậy `x=-3` b)ĐKXĐ: `x≥0` `8x^2-3x+6=4x\sqrt{3x^2+x+2}` `⇔3x^2+x+2-4\sqrt{3x^2+x+2}+4x^2+x^2-4x+4=0` `⇔(\sqrt{3x^2+x+2}-2x)^2+(x-2)^2=0` `⇔`$\left \{ {{\sqrt{3x^2+x+2}-2x=0} \atop {x-2=0}} \right.$ `⇔`$\left \{ {{3x^2+x+2=4x^2} \atop {x=2}} \right.$ `⇔`$\left \{ {{x^2-x-2=0} \atop {x=2}} \right.$ `⇔`$\left \{ {{(x-2)(x+1)=0} \atop {x=2}} \right.$ `⇔`$\left \{ {{ \left[ \begin{array}{l}x=2\\x=-1(KTM)\end{array} \right. } \atop {x=2}} \right.$ Vậy `x=2` Bình luận
Đáp án: Giải thích các bước giải: 1) $ x² + 9x + 20 = 2\sqrt[]{3x + 10}$ $ ⇔ (x² + 6x + 9) + (3x + 10) – 2\sqrt[]{3x + 10} + 1 = 0$ $ ⇔ (x + 3)² + (\sqrt[]{3x + 10} – 1)² = 0$ $ ⇔ x + 3 = \sqrt[]{3x + 10} – 1 = 0$ $ ⇔ x = – 3 (TM)$ 2) $ 8x² – 3x + 6 = 4x\sqrt[]{3x² + x + 2}$ $ ⇔ (x² – 4x + 4) + (3x² + x + 2) – 4x\sqrt[]{3x² + x + 2} + 4x² = 0$ $ ⇔ (x – 2)² + (\sqrt[]{3x² + x + 2} – 2x)² = 0$ $ ⇔ x – 2 = \sqrt[]{3x² + x + 2} – 2x = 0$ $ ⇔ x = 2 (TM)$ Bình luận
a)ĐKXĐ:`x≥-10/3`
`x^2+9x+20=2\sqrt{3x+10}`
`⇔x^2+6x+9+3x+10-2\sqrt{3x+10}+1=0`
`⇔(x+3)^2+(\sqrt{3x+10)-1)^2=0`
`⇔`$\left \{ {{x+3=0} \atop {\sqrt{3x+10}-1=0}} \right.$
`⇔`$\left \{ {{x=-3} \atop {3x+10=1}} \right.$
`⇔`$\left \{ {{x=-3} \atop {x=-3}} \right.$
Vậy `x=-3`
b)ĐKXĐ: `x≥0`
`8x^2-3x+6=4x\sqrt{3x^2+x+2}`
`⇔3x^2+x+2-4\sqrt{3x^2+x+2}+4x^2+x^2-4x+4=0`
`⇔(\sqrt{3x^2+x+2}-2x)^2+(x-2)^2=0`
`⇔`$\left \{ {{\sqrt{3x^2+x+2}-2x=0} \atop {x-2=0}} \right.$
`⇔`$\left \{ {{3x^2+x+2=4x^2} \atop {x=2}} \right.$
`⇔`$\left \{ {{x^2-x-2=0} \atop {x=2}} \right.$
`⇔`$\left \{ {{(x-2)(x+1)=0} \atop {x=2}} \right.$
`⇔`$\left \{ {{ \left[ \begin{array}{l}x=2\\x=-1(KTM)\end{array} \right. } \atop {x=2}} \right.$
Vậy `x=2`
Đáp án:
Giải thích các bước giải:
1) $ x² + 9x + 20 = 2\sqrt[]{3x + 10}$
$ ⇔ (x² + 6x + 9) + (3x + 10) – 2\sqrt[]{3x + 10} + 1 = 0$
$ ⇔ (x + 3)² + (\sqrt[]{3x + 10} – 1)² = 0$
$ ⇔ x + 3 = \sqrt[]{3x + 10} – 1 = 0$
$ ⇔ x = – 3 (TM)$
2)
$ 8x² – 3x + 6 = 4x\sqrt[]{3x² + x + 2}$
$ ⇔ (x² – 4x + 4) + (3x² + x + 2) – 4x\sqrt[]{3x² + x + 2} + 4x² = 0$
$ ⇔ (x – 2)² + (\sqrt[]{3x² + x + 2} – 2x)² = 0$
$ ⇔ x – 2 = \sqrt[]{3x² + x + 2} – 2x = 0$
$ ⇔ x = 2 (TM)$