1. X^2/căn 3x-2. -căn3x-2 = 1-x 2. Căn2x^2-1+căn x^2-3x-2=căn2x^2+2x+3 + Căn x^2-x+2 05/08/2021 Bởi Jade 1. X^2/căn 3x-2. -căn3x-2 = 1-x 2. Căn2x^2-1+căn x^2-3x-2=căn2x^2+2x+3 + Căn x^2-x+2
Giải thích các bước giải: 1, ĐKXĐ: \(x \ge \frac{2}{3}\) \[\begin{array}{l}\frac{{{x^2}}}{{\sqrt {3x – 2} }} – \sqrt {3x – 2} = 1 – x\\ \Leftrightarrow \frac{{{x^2} – {{\sqrt {3x – 2} }^2}}}{{\sqrt {3x – 2} }} + x – 1 = 0\\ \Leftrightarrow \frac{{{x^2} – 3x + 2}}{{\sqrt {3x – 2} }} + x – 1 = 0\\ \Leftrightarrow \left( {x – 1} \right)\left( {\frac{{x – 2}}{{\sqrt {3x – 2} }} + 1} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 1\\2 – x = \sqrt {3x – 2} \end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = 1\\\left\{ \begin{array}{l}x \le 2\\{x^2} – 4x + 4 = 3x – 2\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = 6\end{array} \right.\left( {t/m} \right)\end{array}\] Bình luận
Giải thích các bước giải:
1,
ĐKXĐ: \(x \ge \frac{2}{3}\)
\[\begin{array}{l}
\frac{{{x^2}}}{{\sqrt {3x – 2} }} – \sqrt {3x – 2} = 1 – x\\
\Leftrightarrow \frac{{{x^2} – {{\sqrt {3x – 2} }^2}}}{{\sqrt {3x – 2} }} + x – 1 = 0\\
\Leftrightarrow \frac{{{x^2} – 3x + 2}}{{\sqrt {3x – 2} }} + x – 1 = 0\\
\Leftrightarrow \left( {x – 1} \right)\left( {\frac{{x – 2}}{{\sqrt {3x – 2} }} + 1} \right) = 0\\
\Leftrightarrow \left[ \begin{array}{l}
x = 1\\
2 – x = \sqrt {3x – 2}
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = 1\\
\left\{ \begin{array}{l}
x \le 2\\
{x^2} – 4x + 4 = 3x – 2
\end{array} \right.
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
x = 1\\
x = 6
\end{array} \right.\left( {t/m} \right)
\end{array}\]