`1/3 + 1/6 + 1/10 + …+`$\frac{1}{x(x+1):2}$ = `2013/2105` 04/10/2021 Bởi Amaya `1/3 + 1/6 + 1/10 + …+`$\frac{1}{x(x+1):2}$ = `2013/2105`
Giải thích các bước giải: Ta có: `1/3+1/6+1/10+…+1/(x.(x+1):2)=2013/2015` `=>1/2(1/3+1/6+1/10+…+1/(x.(x+1):2))=1/2. 2013/2015` `=>1/6+1/12+1/20+…+1/(x.(x+1))=2013/4030` `=>1/2.3+1/3.4+1/4.5+…+1/(x.(x+1))=2013/4030` `=>1/2-1/3+1/3-1/4+1/4-1/5+…+1/x-1/(x+1)=2013/4030` `=>1/2-1/(x+1)=2013/4030` `=>1/(x+1)=1/2-2013/4030=2/4300=1/2015` `=>x+1=2015` `=>x=2014.` Bình luận
(giải luôn) 1/2x(1/3+1/6+….+1/x.(x+1):2=1/2×2013/2105 1/6+1/12+…+1/x.(x+1)=2013/4030 1/2.3+1/3,4+…+1/x+1=2013/4030 1/2-1/x+1=2013/4030 1/x+1=1/2-2013/4030 x+1=2015 x=2014 Bình luận
Giải thích các bước giải:
Ta có:
`1/3+1/6+1/10+…+1/(x.(x+1):2)=2013/2015`
`=>1/2(1/3+1/6+1/10+…+1/(x.(x+1):2))=1/2. 2013/2015`
`=>1/6+1/12+1/20+…+1/(x.(x+1))=2013/4030`
`=>1/2.3+1/3.4+1/4.5+…+1/(x.(x+1))=2013/4030`
`=>1/2-1/3+1/3-1/4+1/4-1/5+…+1/x-1/(x+1)=2013/4030`
`=>1/2-1/(x+1)=2013/4030`
`=>1/(x+1)=1/2-2013/4030=2/4300=1/2015`
`=>x+1=2015`
`=>x=2014.`
(giải luôn)
1/2x(1/3+1/6+….+1/x.(x+1):2=1/2×2013/2105
1/6+1/12+…+1/x.(x+1)=2013/4030
1/2.3+1/3,4+…+1/x+1=2013/4030
1/2-1/x+1=2013/4030
1/x+1=1/2-2013/4030
x+1=2015
x=2014