1) x3 – 5×2 + 6x = 0 2) 2×3 + 3×2 – 32x = 48 3) (x2 – 2x + 1) – 4 =0 4) 4×2 + 4x + 1 = x2 5) x2 – 5x + 6 = 0 6) x3 + 3×2 + 2

1) x3 – 5×2 + 6x = 0 2) 2×3 + 3×2 – 32x = 48 3) (x2 – 2x + 1) – 4 =0 4) 4×2 + 4x + 1 = x2 5) x2 – 5x + 6 = 0 6) x3 + 3×2 + 2x = 0 7) x3 – 19x – 30 = 0 8) (x – 2x + 1) – 25 = 0 9) x2 – x = 0 10) x2 – 2x = 0 11) x2 – 3x = 0 12) (x+1)(x+4) =(2-x)(x+2)

0 bình luận về “1) x3 – 5×2 + 6x = 0 2) 2×3 + 3×2 – 32x = 48 3) (x2 – 2x + 1) – 4 =0 4) 4×2 + 4x + 1 = x2 5) x2 – 5x + 6 = 0 6) x3 + 3×2 + 2”

  1. Đáp án:

    12) \(\left[ \begin{array}{l}
    x = 0\\
    x =  – \dfrac{5}{2}
    \end{array} \right.\)

    Giải thích các bước giải:

    \(\begin{array}{l}
    1){x^3} – 5{x^2} + 6x = 0\\
     \to x\left( {{x^2} – 5x + 6} \right) = 0\\
     \to x\left( {x – 2} \right)\left( {x – 3} \right) = 0\\
     \to \left[ \begin{array}{l}
    x = 0\\
    x = 2\\
    x = 3
    \end{array} \right.\\
    2)2{x^3} + 3{x^2} – 32x = 48\\
     \to 2{x^3} – 8{x^2} + 11{x^2} – 44x + 12x – 48 = 0\\
     \to 2{x^2}\left( {x – 4} \right) + 11x\left( {x – 4} \right) + 12\left( {x – 4} \right) = 0\\
     \to \left( {x – 4} \right)\left( {2{x^2} + 11x + 12} \right) = 0\\
     \to \left( {x – 4} \right)\left( {2x + 3} \right)\left( {x + 4} \right) = 0\\
     \to \left[ \begin{array}{l}
    x = 4\\
    x =  – \dfrac{3}{2}\\
    x =  – 4
    \end{array} \right.\\
    3)\left( {{x^2} – 2x + 1} \right) – 4 = 0\\
     \to {\left( {x – 1} \right)^2} = 4\\
     \to \left| {x – 1} \right| = 2\\
     \to \left[ \begin{array}{l}
    x – 1 = 2\\
    x – 1 =  – 2
    \end{array} \right.\\
     \to \left[ \begin{array}{l}
    x = 3\\
    x =  – 1
    \end{array} \right.\\
    4)4{x^2} + 4x + 1 = {x^2}\\
     \to {\left( {2x + 1} \right)^2} = {x^2}\\
     \to \left| {2x + 1} \right| = \left| x \right|\\
     \to \left[ \begin{array}{l}
    2x + 1 = x\left( {DK:x \ge 0} \right)\\
    2x + 1 =  – x\left( {DK:x < 0} \right)
    \end{array} \right.\\
     \to \left[ \begin{array}{l}
    x =  – 1\left( l \right)\\
    x =  – \dfrac{1}{3}\left( {TM} \right)
    \end{array} \right.\\
    5){x^2} – 5x + 6 = 0\\
     \to \left( {x – 2} \right)\left( {x – 3} \right) = 0\\
     \to \left[ \begin{array}{l}
    x = 2\\
    x =  – 3
    \end{array} \right.\\
    6){x^3} + 3{x^2} + 2x = 0\\
     \to x\left( {{x^2} + 3x + 2} \right) = 0\\
     \to x\left( {x + 1} \right)\left( {x + 2} \right) = 0\\
     \to \left[ \begin{array}{l}
    x = 0\\
    x =  – 1\\
    x =  – 2
    \end{array} \right.\\
    8){x^2} – 2x + 1 = 25\\
     \to {\left( {x – 1} \right)^2} = 25\\
     \to \left| {x – 1} \right| = 5\\
     \to \left[ \begin{array}{l}
    x – 1 = 5\\
    x – 1 =  – 5
    \end{array} \right.\\
     \to \left[ \begin{array}{l}
    x = 6\\
    x =  – 4
    \end{array} \right.\\
    9){x^2} – x = 0\\
     \to x\left( {x – 1} \right) = 0\\
     \to \left[ \begin{array}{l}
    x = 0\\
    x = 1
    \end{array} \right.\\
    10){x^2} – 2x = 0\\
     \to x\left( {x – 2} \right) = 0\\
     \to \left[ \begin{array}{l}
    x = 0\\
    x = 2
    \end{array} \right.\\
    11){x^2} – 3x = 0\\
     \to x\left( {x – 3} \right) = 0\\
     \to \left[ \begin{array}{l}
    x = 0\\
    x = 3
    \end{array} \right.\\
    12)\left( {x + 1} \right)\left( {x + 4} \right) = \left( {2 – x} \right)\left( {x + 2} \right)\\
     \to {x^2} + 5x + 4 = 4 – {x^2}\\
     \to 2{x^2} + 5x = 0\\
     \to x\left( {2x + 5} \right) = 0\\
     \to \left[ \begin{array}{l}
    x = 0\\
    x =  – \dfrac{5}{2}
    \end{array} \right.
    \end{array}\)

    Bình luận

Viết một bình luận