1/4 + 1/3 : ║2x – 1 ║ = 11/12 ║là trị tuyệt đối 15/08/2021 Bởi Jade 1/4 + 1/3 : ║2x – 1 ║ = 11/12 ║là trị tuyệt đối
Đáp án: `1/4 + 1/3 : |2x – 1| = 11/12` `1/3 : |2x – 1| = 11/12 – 1/4` `1/3 : |2x – 1| = 2/3` `|2x – 1| = 1/3 : 2/3` `|2x – 1| = 1/2` `⇒` \(\left[ \begin{array}{l}2x – 1 =\frac{1}{2} \\2x – 1 =-\frac{1}{2}\end{array} \right.\) `⇒` \(\left[ \begin{array}{l}2x =\frac{3}{2} \\2x = \frac{1}{2}\end{array} \right.\) `⇒` \(\left[ \begin{array}{l}x =\frac{3}{4} \\x = \frac{1}{4}\end{array} \right.\) Vậy `x ∈ {3/4 ; 1/4}` Bình luận
Đáp án: Giải thích các bước giải: $\frac{1}{4}$ + $\frac{1}{3}$ : |2x-1| = $\frac{11}{12}$ ⇒ $\frac{1}{3}$ : |2x-1| = $\frac{11}{12}$ – $\frac{1}{4}$ ⇒ $\frac{1}{3}$ : |2x-1| = $\frac{11}{12}$ – $\frac{3}{12}$ ⇒ $\frac{1}{3}$ : |2x-1| = $\frac{11-3}{12}$ ⇒ $\frac{1}{3}$ : |2x-1| = $\frac{2}{3}$ ⇒ |2x-1| = $\frac{1}{3}$ : $\frac{2}{3}$ ⇒ |2x-1| = $\frac{1}{3}$ . $\frac{3}{2}$ ⇒ |2x-1| = $\frac{1}{3} ⇒ \(\left[ \begin{array}{l}2x – 1 = \frac{1}{3}\\2x = \frac{1}{3}\end{array} \right.\) ⇒ \(\left[ \begin{array}{l}2x – 1= \frac{1}{3}\\2x = -\frac{1}{3}+1\end{array} \right.\) Bình luận
Đáp án:
`1/4 + 1/3 : |2x – 1| = 11/12`
`1/3 : |2x – 1| = 11/12 – 1/4`
`1/3 : |2x – 1| = 2/3`
`|2x – 1| = 1/3 : 2/3`
`|2x – 1| = 1/2`
`⇒` \(\left[ \begin{array}{l}2x – 1 =\frac{1}{2} \\2x – 1 =-\frac{1}{2}\end{array} \right.\)
`⇒` \(\left[ \begin{array}{l}2x =\frac{3}{2} \\2x = \frac{1}{2}\end{array} \right.\)
`⇒` \(\left[ \begin{array}{l}x =\frac{3}{4} \\x = \frac{1}{4}\end{array} \right.\)
Vậy `x ∈ {3/4 ; 1/4}`
Đáp án:
Giải thích các bước giải:
$\frac{1}{4}$ + $\frac{1}{3}$ : |2x-1| = $\frac{11}{12}$
⇒ $\frac{1}{3}$ : |2x-1| = $\frac{11}{12}$ – $\frac{1}{4}$
⇒ $\frac{1}{3}$ : |2x-1| = $\frac{11}{12}$ – $\frac{3}{12}$
⇒ $\frac{1}{3}$ : |2x-1| = $\frac{11-3}{12}$
⇒ $\frac{1}{3}$ : |2x-1| = $\frac{2}{3}$
⇒ |2x-1| = $\frac{1}{3}$ : $\frac{2}{3}$
⇒ |2x-1| = $\frac{1}{3}$ . $\frac{3}{2}$
⇒ |2x-1| = $\frac{1}{3}
⇒ \(\left[ \begin{array}{l}2x – 1 = \frac{1}{3}\\2x = \frac{1}{3}\end{array} \right.\)
⇒ \(\left[ \begin{array}{l}2x – 1= \frac{1}{3}\\2x = -\frac{1}{3}+1\end{array} \right.\)