1)(4x-10)(20+5x)=0 2) $\frac{x+1}{x-1}$ -$\frac{x-1}{x+1}$ =$\frac{4}{x^2-1}$ 3)$\frac{2x-8}{6}$ -$\frac{3x+1}{4}$ =$\frac{9x-2}{8}$ +$\frac{3x-1}{1

1)(4x-10)(20+5x)=0
2) $\frac{x+1}{x-1}$ -$\frac{x-1}{x+1}$ =$\frac{4}{x^2-1}$
3)$\frac{2x-8}{6}$ -$\frac{3x+1}{4}$ =$\frac{9x-2}{8}$ +$\frac{3x-1}{12}$
5)(x+2)(3-4x)=x^2 +4x+4
6)(2x+1)(x+1)^2(2x+3)=0

0 bình luận về “1)(4x-10)(20+5x)=0 2) $\frac{x+1}{x-1}$ -$\frac{x-1}{x+1}$ =$\frac{4}{x^2-1}$ 3)$\frac{2x-8}{6}$ -$\frac{3x+1}{4}$ =$\frac{9x-2}{8}$ +$\frac{3x-1}{1”

  1. Đáp án:

    ↓↓↓

    Giải thích các bước giải:

    `a,(4x-10)(20-5x)=0`

    ⇒ \(\left[ \begin{array}{l}4x-10=0\\20-5x=0\end{array} \right.\) 

    ⇒ \(\left[ \begin{array}{l}x=5/2\\x=4\end{array} \right.\) 

    `b,(x+1)/(x-1)-(x-1)/(x+1)=4/(x^2-1)`

    ⇒`x`$\neq$ `±1`

    ⇒`(x+1)/(x-1)-(x-1)/(x+1)-4/(x^2-1)=0`

    ⇒`((x+1)^2-(x-1)^2-4)/((x-1)(x+1))=0`

    ⇒`(4(x-1))/((x-1)(x+1))=0`

    ⇒`4/(x+1)=0`

    ⇒`4=0`

    ⇒`x∈∅`

    `c,(2x-8)/6-(3x+1)/4=(9x-2)/8+(3x-1)/12`

    ⇒`4(2x-8)-6(3x+1)=3(9x-2)+2(3x-1)`

    ⇒`8x-32-18x-6=27x-6+6x-2`

    ⇒`-43x=30`

    ⇒`x=-30/43`

    `d,(x+2)(3-4x)=x^2+4x+4`

    ⇒`3x-4x^2+6-8x=x^2+4x+4`

    ⇒`-5x-4x^2+6=x^2+4x+4`

    ⇒`-5x-4x^2+6-x^2-4x-4=0`

    ⇒`(x+2)(5x-1)=0`

    ⇒\(\left[ \begin{array}{l}x=-2\\x=1/5\end{array} \right.\)

    `e,(2x+1)(x+1)^2(2x+3)=0`

    ⇒\(\left[ \begin{array}{l}2x+1=0\\(x+1)^2=0\\2x+3=0\end{array} \right.\)

    ⇒\(\left[ \begin{array}{l}x=-1/2\\x=-1\\x=-3/2\end{array} \right.\)

    Bình luận
  2. Đáp án:

    5) \(\left[ \begin{array}{l}
    x =  – 2\\
    x = \dfrac{1}{5}
    \end{array} \right.\)

    Giải thích các bước giải:

    \(\begin{array}{l}
    1)\left( {4x – 10} \right)\left( {20 + 5x} \right) = 0\\
     \to \left[ \begin{array}{l}
    4x – 10 = 0\\
    20 + 5x = 0
    \end{array} \right.\\
     \to \left[ \begin{array}{l}
    x = \dfrac{5}{2}\\
    x =  – 4
    \end{array} \right.\\
    2)DK:x \ne  \pm 1\\
    \dfrac{{{{\left( {x + 1} \right)}^2} – {{\left( {x – 1} \right)}^2} – 4}}{{\left( {x – 1} \right)\left( {x + 1} \right)}} = 0\\
     \to {x^2} + 2x + 1 – {x^2} + 2x – 1 – 4 = 0\\
     \to 4x – 4 = 0\\
     \to x = 1\left( l \right)\\
     \to x \in \emptyset \\
    3)\dfrac{{4\left( {2x – 8} \right) – 6\left( {3x + 1} \right) – 3\left( {9x – 2} \right) – 2\left( {3x – 1} \right)}}{{24}} = 0\\
     \to 8x – 32 – 18x – 6 – 18x + 6 – 6x + 2 = 0\\
     \to  – 34x – 30 = 0\\
     \to x =  – \dfrac{{15}}{{17}}\\
    5)(x + 2)(3 – 4x) = {x^2} + 4x + 4\\
     \to  – 4{x^2} – 5x + 6 = {x^2} + 4x + 4\\
     \to 5{x^2} + 9x – 2 = 0\\
     \to 5{x^2} + 10x – x – 2 = 0\\
     \to 5x\left( {x + 2} \right) – \left( {x + 2} \right) = 0\\
     \to \left( {x + 2} \right)\left( {5x – 1} \right) = 0\\
     \to \left[ \begin{array}{l}
    x =  – 2\\
    x = \dfrac{1}{5}
    \end{array} \right.\\
    6)(2x + 1){(x + 1)^2}(2x + 3) = 0\\
     \to \left[ \begin{array}{l}
    2x + 1 = 0\\
    x + 1 = 0\\
    2x + 3 = 0
    \end{array} \right.\\
     \to \left[ \begin{array}{l}
    x =  – \dfrac{1}{2}\\
    x =  – 1\\
    x =  – \dfrac{3}{2}
    \end{array} \right.
    \end{array}\)

    Bình luận

Viết một bình luận