1)500-{5.[409-(2^2.3-21)^2]}:15 2)3x-31=14 3)20+5.(x-8)=5^2.4 4)A=2^0+2^1+2^2+…………….+2^49+2^50 13/09/2021 Bởi Ivy 1)500-{5.[409-(2^2.3-21)^2]}:15 2)3x-31=14 3)20+5.(x-8)=5^2.4 4)A=2^0+2^1+2^2+…………….+2^49+2^50
Đáp án: \(\begin{array}{l} 1)\,\,\frac{{1172}}{3}\\ 2)\,\,x\, = 15\\ 3)\,\,x = 24\\ 4)\,\,\,A = {2^{51}} – 1. \end{array}\) Giải thích các bước giải: \(\begin{array}{l} 1)\,\,\,500 – \left\{ {5.\left[ {409 – {{\left( {{2^2}.3 – 21} \right)}^2}} \right]} \right\}:15\\ = 500 – \left\{ {5.\left[ {409 – {{\left( {12 – 21} \right)}^2}} \right]} \right\}:15\\ = 500 – 5.\left( {409 – {9^2}} \right):15\\ = 500 – 5.\left( {409 – 81} \right):15\\ = 500 – 5.328:15\\ = 500 – \frac{{328}}{3}\\ = \frac{{500.3 – 328}}{3} = \frac{{1172}}{3}.\\ 2)\,\,3x – 31 = 14\\ \,\,\,\,\,\,3x\,\,\,\, = 14 + 31\\ \,\,\,\,\,\,3x\,\,\,\,\,\, = 45\\ \,\,\,\,\,\,\,\,\,x\,\,\,\,\,\,\, = 45:3\\ \,\,\,\,\,\,\,\,\,x\,\,\,\,\,\,\, = 15.\\ 3)\,\,\,20 + 5.\left( {x – 8} \right) = {5^2}.4\\ \,\,\,\,\,\,\,\,20 + 5\left( {x – 8} \right) = 100\\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,5\left( {x – 8} \right) = 80\\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x – 8 = 16\\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x\,\,\,\,\,\,\,\,\,\,\, = 24.\\ 4)\,\,\,A = {2^0} + {2^1} + {2^2} + ……. + {2^{49}} + {2^{50}}\\ Ta\,\,\,co:\,\,\,\,2A = 2\left( {{2^0} + {2^1} + {2^2} + ……. + {2^{49}} + {2^{50}}} \right)\\ \Rightarrow 2A = {2^1} + {2^2} + {2^3} + …… + {2^{50}} + {2^{51}}\\ \Rightarrow 2A – A = {2^1} + {2^2} + {2^3} + …… + {2^{50}} + {2^{51}} – \left( {{2^0} + {2^1} + {2^2} + ……. + {2^{49}} + {2^{50}}} \right)\\ \Rightarrow A = {2^{51}} – {2^0}\\ \Rightarrow A = {2^{51}} – 1. \end{array}\) Bình luận
Đáp án:
\(\begin{array}{l}
1)\,\,\frac{{1172}}{3}\\
2)\,\,x\, = 15\\
3)\,\,x = 24\\
4)\,\,\,A = {2^{51}} – 1.
\end{array}\)
Giải thích các bước giải:
\(\begin{array}{l}
1)\,\,\,500 – \left\{ {5.\left[ {409 – {{\left( {{2^2}.3 – 21} \right)}^2}} \right]} \right\}:15\\
= 500 – \left\{ {5.\left[ {409 – {{\left( {12 – 21} \right)}^2}} \right]} \right\}:15\\
= 500 – 5.\left( {409 – {9^2}} \right):15\\
= 500 – 5.\left( {409 – 81} \right):15\\
= 500 – 5.328:15\\
= 500 – \frac{{328}}{3}\\
= \frac{{500.3 – 328}}{3} = \frac{{1172}}{3}.\\
2)\,\,3x – 31 = 14\\
\,\,\,\,\,\,3x\,\,\,\, = 14 + 31\\
\,\,\,\,\,\,3x\,\,\,\,\,\, = 45\\
\,\,\,\,\,\,\,\,\,x\,\,\,\,\,\,\, = 45:3\\
\,\,\,\,\,\,\,\,\,x\,\,\,\,\,\,\, = 15.\\
3)\,\,\,20 + 5.\left( {x – 8} \right) = {5^2}.4\\
\,\,\,\,\,\,\,\,20 + 5\left( {x – 8} \right) = 100\\
\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,5\left( {x – 8} \right) = 80\\
\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x – 8 = 16\\
\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x\,\,\,\,\,\,\,\,\,\,\, = 24.\\
4)\,\,\,A = {2^0} + {2^1} + {2^2} + ……. + {2^{49}} + {2^{50}}\\
Ta\,\,\,co:\,\,\,\,2A = 2\left( {{2^0} + {2^1} + {2^2} + ……. + {2^{49}} + {2^{50}}} \right)\\
\Rightarrow 2A = {2^1} + {2^2} + {2^3} + …… + {2^{50}} + {2^{51}}\\
\Rightarrow 2A – A = {2^1} + {2^2} + {2^3} + …… + {2^{50}} + {2^{51}} – \left( {{2^0} + {2^1} + {2^2} + ……. + {2^{49}} + {2^{50}}} \right)\\
\Rightarrow A = {2^{51}} – {2^0}\\
\Rightarrow A = {2^{51}} – 1.
\end{array}\)
Đáp án:
Giải thích các bước giải: