1. cho A=1/1.2.3+1/2.3.4+1/3.4.5+…+1/2014.2015.2016 so sánh A với 1/4 2 a) x/3+1/y=1/2 b)5xy+2y+x=3

1.
cho A=1/1.2.3+1/2.3.4+1/3.4.5+…+1/2014.2015.2016
so sánh A với 1/4
2
a) x/3+1/y=1/2
b)5xy+2y+x=3

0 bình luận về “1. cho A=1/1.2.3+1/2.3.4+1/3.4.5+…+1/2014.2015.2016 so sánh A với 1/4 2 a) x/3+1/y=1/2 b)5xy+2y+x=3”

  1. 1.

    `A= 1/(1.2.3) + 1/(2.3.4) + 1/(3.4.5)+…+1/(2014.2015.2016`

    `A= 1/2(1/1.2 – 1/2.3 + 1/2.3 – 1/3.4 +….+1/2014.2015 -1/2015.2016 )`

    `A= 1/2 (1/1.2 – 1/2015.2016)`

    `A= 1/2 ( 1/2 – 1/2015.2016)`

    `A= 1/4 – 1/(2.2015.2016) < 1/4`

    Vậy `A< 1/4`

    2.

    a) `x/3 + 1/y= 1/2`

    `=> (xy)/(3y) + 3/(3y) = 1/2`

    `=> (xy+3)/(3y) = 1/2`

    `=> 2(xy+3) = 3y`

    `=> 2xy + 6 = 3y`

    `=> 2xy – 3y = -6`

    `=> y(2x-3) = -6`

    `=> y ; 2x – 3 in Ư(6)`

    `=> y; 2x-3 in { 1;2;3;6 ; -1; -2;-3; -6}`

    Vì `2x` chẵn `=> 2x-3` lẻ

    `=> 2x-3 in { 1;3; -1; -3}`

    +) `2x – 3 = 1; y = -6`

    `=> x= 2 ; y =-6`

    +) `2x -3 = -3 ; y= 2`

    `=> x =0 ; y=2`

    +) ` 2x -3 = 3 ; y = -2`

    `=> x= 3; y= -2`

    +) `2x – 3= -1 ; y= 6`

    `=> x= 1; y= 6`

    Vậy các cặp số `(x;y)` là : `(1;6) ; ( 3; -2) ; ( 2; -6) ;  ( 0;2)`

    b) `5xy + 2y +x =3`

    `5(5xy + 2y +x) = 5.3`

    `25xy + 10y + 5x = 15`

    `5y(5x + 2) + 5x = 15`

    `5y(5x +2) + (5x+2) -2 = 15`

    `(5x+2)(5y+1) = 17`

    `=>5x+2 ; 5y+1 in Ư(17)`

    `=> 5x+2; 5y+1 in { 1;17; -1; -17}`

    +) `5x + 2= 1; 5y+1 = 17`

    `=> x= -1/5 ; y= 16/5`

    +) `5x +2 = 17; 5y+1 = 1`

    `=> x= 3; y= 0`

    +) `5x+2 = -1; 5y+1 = -17`

    `=> x= -3/5  ; y= -18/5`

    +) `5x+2 = -17; 5y+1 = -1`

    `=> x= -19/5 ; y= -2/5`

    Vậy các cặp `(x;y)` thỏa mãn là : `(-19/5 ; -2/5)` ; `( -3/5; -18/5)` ; `( 3;0)` ; `( -1/5 ; 16/5)`

    Bình luận

Viết một bình luận