1. Tìm (2 – n) / (n + 1) 2. Tìm (n – 2) / (3n + 1) 05/11/2021 Bởi Eva 1. Tìm (2 – n) / (n + 1) 2. Tìm (n – 2) / (3n + 1)
1. $\lim\dfrac{2-n}{n+1}$ $=\lim\dfrac{\dfrac{2}{n}-1}{1+\dfrac{1}{n}}$ $=\dfrac{-1}{1}=-1$ 2. $\lim\dfrac{n-2}{3n+1}$ $=\lim\dfrac{1-\dfrac{2}{n}}{3+\dfrac{1}{n}}$ $=\dfrac{1}{3}$ Bình luận
1) $\,\,\,\,\lim \dfrac{2-n}{n+1}$ $=\lim \dfrac{-n+2}{n+1}$ $=\lim \dfrac{-1+\dfrac{2}{n}}{1+\dfrac{1}{n}}$ $=\dfrac{-1}{1}$ $=-1$ 2) $\,\,\,\,\lim \dfrac{n-2}{3n+1}$ $=\lim \dfrac{1-\dfrac{2}{n}}{3+\dfrac{1}{n}}$ $=\dfrac{1}{3}$ Bình luận
1.
$\lim\dfrac{2-n}{n+1}$
$=\lim\dfrac{\dfrac{2}{n}-1}{1+\dfrac{1}{n}}$
$=\dfrac{-1}{1}=-1$
2.
$\lim\dfrac{n-2}{3n+1}$
$=\lim\dfrac{1-\dfrac{2}{n}}{3+\dfrac{1}{n}}$
$=\dfrac{1}{3}$
1)
$\,\,\,\,\lim \dfrac{2-n}{n+1}$
$=\lim \dfrac{-n+2}{n+1}$
$=\lim \dfrac{-1+\dfrac{2}{n}}{1+\dfrac{1}{n}}$
$=\dfrac{-1}{1}$
$=-1$
2)
$\,\,\,\,\lim \dfrac{n-2}{3n+1}$
$=\lim \dfrac{1-\dfrac{2}{n}}{3+\dfrac{1}{n}}$
$=\dfrac{1}{3}$