1 tìm x a, ( x -1 ) ( x + 1/ 2 ) = 0 b , ( 2 x – 1 ) ( x + 2/5 ) = 0 2 26/07/2021 Bởi Aaliyah 1 tìm x a, ( x -1 ) ( x + 1/ 2 ) = 0 b , ( 2 x – 1 ) ( x + 2/5 ) = 0 2
${a,(x-1)(x+}$ $\dfrac{1}{2})=0$ ${=>}$ \(\left[ \begin{array}{l}x-1=0\\x+1/2=0\end{array} \right.\) ${=>}$ \(\left[ \begin{array}{l}x=1\\x=-1/2\end{array} \right.\) Vậy ${x}$ ∈ {${1;}$ $-\dfrac{1}{2}$} ${b,(2x-1)(x+}$ $\dfrac{2}{5})=0$ ${=>}$ \(\left[ \begin{array}{l}2x-1=0\\x+2/5=0\end{array} \right.\) ${=>}$ \(\left[ \begin{array}{l}x=1/2\\x=-2/5\end{array} \right.\) Vậy ${x}$ ∈ {${}$ $\dfrac{1}{2};-$ $\dfrac{2}{5}$} ~Xin hay nhất~ Bình luận
Đáp án: a) $x\in \left \{ 1;\dfrac{1}{2} \right \}$ b) $x\in \left \{ \dfrac{1}{2};-\dfrac{2}{5} \right \}$ Giải thích các bước giải: a) $(x-1)\left ( x+\dfrac{1}{2} \right )=0$$\Leftrightarrow \left[ \begin{array}{l}x-1=0\\x+\dfrac{1}{2}=0\end{array} \right.$$\Leftrightarrow \left[ \begin{array}{l}x=1\\x=-\dfrac{1}{2}\end{array} \right.$Vậy $x\in \left \{ 1;\dfrac{1}{2} \right \}$b) $(2x-1)\left ( x+\dfrac{2}{5} \right )=0$$\Leftrightarrow \left[ \begin{array}{l}2x-1=0\\x+\dfrac{2}{5}=0\end{array} \right.$$\Leftrightarrow \left[ \begin{array}{l}x=\dfrac{1}{2}\\x=-\dfrac{2}{5}\end{array} \right.$Vậy $x\in \left \{ \dfrac{1}{2};-\dfrac{2}{5} \right \}$ Bình luận
${a,(x-1)(x+}$ $\dfrac{1}{2})=0$
${=>}$ \(\left[ \begin{array}{l}x-1=0\\x+1/2=0\end{array} \right.\)
${=>}$ \(\left[ \begin{array}{l}x=1\\x=-1/2\end{array} \right.\)
Vậy ${x}$ ∈ {${1;}$ $-\dfrac{1}{2}$}
${b,(2x-1)(x+}$ $\dfrac{2}{5})=0$
${=>}$ \(\left[ \begin{array}{l}2x-1=0\\x+2/5=0\end{array} \right.\)
${=>}$ \(\left[ \begin{array}{l}x=1/2\\x=-2/5\end{array} \right.\)
Vậy ${x}$ ∈ {${}$ $\dfrac{1}{2};-$ $\dfrac{2}{5}$}
~Xin hay nhất~
Đáp án:
a) $x\in \left \{ 1;\dfrac{1}{2} \right \}$
b) $x\in \left \{ \dfrac{1}{2};-\dfrac{2}{5} \right \}$
Giải thích các bước giải:
a) $(x-1)\left ( x+\dfrac{1}{2} \right )=0$
$\Leftrightarrow \left[ \begin{array}{l}x-1=0\\x+\dfrac{1}{2}=0\end{array} \right.$
$\Leftrightarrow \left[ \begin{array}{l}x=1\\x=-\dfrac{1}{2}\end{array} \right.$
Vậy $x\in \left \{ 1;\dfrac{1}{2} \right \}$
b) $(2x-1)\left ( x+\dfrac{2}{5} \right )=0$
$\Leftrightarrow \left[ \begin{array}{l}2x-1=0\\x+\dfrac{2}{5}=0\end{array} \right.$
$\Leftrightarrow \left[ \begin{array}{l}x=\dfrac{1}{2}\\x=-\dfrac{2}{5}\end{array} \right.$
Vậy $x\in \left \{ \dfrac{1}{2};-\dfrac{2}{5} \right \}$