1 tìm x a, ( x -1 ) ( x + 1/ 2 ) = 0 b , ( 2 x – 1 ) ( x + 2/5 ) = 0 2

1 tìm x
a, ( x -1 ) ( x + 1/ 2 ) = 0
b , ( 2 x – 1 ) ( x + 2/5 ) = 0
2

0 bình luận về “1 tìm x a, ( x -1 ) ( x + 1/ 2 ) = 0 b , ( 2 x – 1 ) ( x + 2/5 ) = 0 2”

  1. ${a,(x-1)(x+}$ $\dfrac{1}{2})=0$ 

    ${=>}$ \(\left[ \begin{array}{l}x-1=0\\x+1/2=0\end{array} \right.\)

    ${=>}$ \(\left[ \begin{array}{l}x=1\\x=-1/2\end{array} \right.\)

    Vậy ${x}$ ∈ {${1;}$ $-\dfrac{1}{2}$}

    ${b,(2x-1)(x+}$ $\dfrac{2}{5})=0$

    ${=>}$ \(\left[ \begin{array}{l}2x-1=0\\x+2/5=0\end{array} \right.\)

    ${=>}$ \(\left[ \begin{array}{l}x=1/2\\x=-2/5\end{array} \right.\)

    Vậy ${x}$ ∈ {${}$ $\dfrac{1}{2};-$ $\dfrac{2}{5}$}

       ~Xin hay nhất~

    Bình luận
  2. Đáp án:

    a) $x\in \left \{ 1;\dfrac{1}{2} \right \}$

    b) $x\in \left \{ \dfrac{1}{2};-\dfrac{2}{5} \right \}$

    Giải thích các bước giải:

    a) $(x-1)\left ( x+\dfrac{1}{2} \right )=0$
    $\Leftrightarrow \left[ \begin{array}{l}x-1=0\\x+\dfrac{1}{2}=0\end{array} \right.$
    $\Leftrightarrow \left[ \begin{array}{l}x=1\\x=-\dfrac{1}{2}\end{array} \right.$
    Vậy $x\in \left \{ 1;\dfrac{1}{2} \right \}$
    b) $(2x-1)\left ( x+\dfrac{2}{5} \right )=0$
    $\Leftrightarrow \left[ \begin{array}{l}2x-1=0\\x+\dfrac{2}{5}=0\end{array} \right.$
    $\Leftrightarrow \left[ \begin{array}{l}x=\dfrac{1}{2}\\x=-\dfrac{2}{5}\end{array} \right.$
    Vậy $x\in \left \{ \dfrac{1}{2};-\dfrac{2}{5} \right \}$

    Bình luận

Viết một bình luận