1. Tìm lim (2n + 1) / (1 + n) 2. Tìm lim (2n^2 – 3) / (1 – 2n^2) 05/11/2021 Bởi Kennedy 1. Tìm lim (2n + 1) / (1 + n) 2. Tìm lim (2n^2 – 3) / (1 – 2n^2)
$1. $ `lim {2n+1}/{1+n}` `=lim {n(2+1/ n)}/{n(1/n+1)}` `=lim {2+ 1/ n}/{1/ n+1}` `={2+0}/{0+1}=2` $\\$ $2. $ `lim {2n^2-3}/{1-2n^2}` `=lim {n^2 (2-3/ {n^2})}/{n^2(1/{n^2}-2)}` `=lim {2-3/{ n^2}}/{1/ {n^2}-2}` `={2+0}/{0-2}=-1` Bình luận
1. `lim (2n + 1) / (1 + n)` `=lim(2+1/n)/(1/n+1)` `=2` 2. `lim {2n^2-3}/{1-2n^2}` `=lim {2-3/ n}/{1/ {n^2}-2}` `=-1` Bình luận
$1. $ `lim {2n+1}/{1+n}`
`=lim {n(2+1/ n)}/{n(1/n+1)}`
`=lim {2+ 1/ n}/{1/ n+1}`
`={2+0}/{0+1}=2`
$\\$
$2. $ `lim {2n^2-3}/{1-2n^2}`
`=lim {n^2 (2-3/ {n^2})}/{n^2(1/{n^2}-2)}`
`=lim {2-3/{ n^2}}/{1/ {n^2}-2}`
`={2+0}/{0-2}=-1`
1.
`lim (2n + 1) / (1 + n)`
`=lim(2+1/n)/(1/n+1)`
`=2`
2.
`lim {2n^2-3}/{1-2n^2}`
`=lim {2-3/ n}/{1/ {n^2}-2}`
`=-1`