1. Tìm lim ( -2n^2019 + 3n^2018 + 4) 2. Tìm lim (2 – 3n)^4 . (n + 1)^3 05/11/2021 Bởi Piper 1. Tìm lim ( -2n^2019 + 3n^2018 + 4) 2. Tìm lim (2 – 3n)^4 . (n + 1)^3
1. $\lim(-2n^{2019}+3n^{2018}+4)$ $=\lim n^{2019}.\Big(-2+\dfrac{3}{n}+\dfrac{4}{n^{2019}}\Big)$ $=-\infty$ 2. $\lim[(2-3n)^4(n+1)^3]$ $=\lim n^7\Big[\Big( \dfrac{2}{n}-3\Big)^4.\Big(1+\dfrac{1}{n}\Big)^3\Big]$ $=+\infty$ Bình luận
1.
$\lim(-2n^{2019}+3n^{2018}+4)$
$=\lim n^{2019}.\Big(-2+\dfrac{3}{n}+\dfrac{4}{n^{2019}}\Big)$
$=-\infty$
2.
$\lim[(2-3n)^4(n+1)^3]$
$=\lim n^7\Big[\Big( \dfrac{2}{n}-3\Big)^4.\Big(1+\dfrac{1}{n}\Big)^3\Big]$
$=+\infty$