1. Tìm lim [3^(n+1) + 2n] / (5 + 3^n) 2. Tìm lim [(3n^2 + n) / (4n^2 – 5)]

1. Tìm lim [3^(n+1) + 2n] / (5 + 3^n)
2. Tìm lim [(3n^2 + n) / (4n^2 – 5)]

0 bình luận về “1. Tìm lim [3^(n+1) + 2n] / (5 + 3^n) 2. Tìm lim [(3n^2 + n) / (4n^2 – 5)]”

  1. 1.

    $\lim\dfrac{3^{n+1}+2^n}{5+3^n}$

    $=\lim\dfrac{3.3^n+2^n}{5+3^n}$

    $=\lim\dfrac{3+\Big(\dfrac{2}{3}\Big)^n}{\dfrac{5}{3^n}+1}$

    $=3$

    2.

    $\lim\dfrac{3n^2+n}{4n^2-5}$

    $=\lim\dfrac{3+\dfrac{1}{n}}{4-\dfrac{5}{n^2}}$

    $=\dfrac{3}{4}$

    Bình luận
  2. 1.

    `lim [3^(n+1) + 2n] / (5 + 3^n)`

    `=\lim\frac{3.3^n+2^n}{5+3^n}`

    `=3`

    2.

    `lim [(3n^2 + n) / (4n^2 – 5)]`

    `=\lim\frac{3+\frac{1}{n}}{4-\frac{5}{n^2}}=3/4`

    Bình luận

Viết một bình luận