1. Tìm lim (Un) biết (Un) = [1 / (2^2 – 1)] + [1 / (3^2 – 1)] + … + [1 / (n^2 – 1)]
2. Tìm lim [ 1 / (1.2) + 1/ (2.3) + 1/ (3.4) + … + 1/ n.(n + 1)]
1. Tìm lim (Un) biết (Un) = [1 / (2^2 – 1)] + [1 / (3^2 – 1)] + … + [1 / (n^2 – 1)]
2. Tìm lim [ 1 / (1.2) + 1/ (2.3) + 1/ (3.4) + … + 1/ n.(n + 1)]
1.
`lim [1 / (2^2 – 1)] + [1 / (3^2 – 1)] + … + [1 / (n^2 – 1)]`
`=lim1/2(1/1+1/2-1/(n+1))`
`=lim3/4-1/(2(+1))`
`=3/4`
2.
`lim [ 1 / (1.2) + 1/ (2.3) + 1/ (3.4) + … + 1/ (n.(n + 1))]`
`=lim(1-1/2+1/2-1/3+1/2-1/4+…+1-(1)/(n+1))`
`=lim(1-1/(n+1))`
`=1`