1,tim nghiem cua x thuoc [0; PI/2] 2SIN ^{2}X-3SINX +1^{2}=0

1,tim nghiem cua x thuoc [0; PI/2]
2SIN ^{2}X-3SINX +1^{2}=0

0 bình luận về “1,tim nghiem cua x thuoc [0; PI/2] 2SIN ^{2}X-3SINX +1^{2}=0”

  1. Đáp án:

    \(pt\,\,\,co\,\,2\,\,\,nghiem\,\,\,x \in \left[ {0;\,\,\frac{\pi }{2}} \right]\,\,\,la:\,\,\,\,x \in \left\{ {\frac{\pi }{6};\,\,\frac{\pi }{2}} \right\}\)
    Hướng dẫn giải chi tiết:
    \[\begin{array}{l}
    2{\sin ^2}x – 3\sin x + 1 = 0\\
    \Leftrightarrow \left[ \begin{array}{l}
    \sin x = 1\\
    \sin x = \frac{1}{2}
    \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
    x = \frac{\pi }{2} + k2\pi \\
    x = \frac{\pi }{6} + m2\pi \\
    x = \frac{{5\pi }}{6} + l2\pi
    \end{array} \right.\,\,\,\left( {k,\,\,m,\,\,l \in Z} \right)\\
    0 \le x \le \frac{\pi }{2} \Rightarrow \left[ \begin{array}{l}
    0 \le \frac{\pi }{2} + k2\pi \le \frac{\pi }{2}\\
    0 \le \frac{\pi }{6} + m2\pi \le \frac{\pi }{2}\\
    0 \le \frac{{5\pi }}{6} + l2\pi \le \frac{\pi }{2}
    \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
    – \frac{\pi }{2} \le k2\pi \le 0\\
    – \frac{\pi }{6} \le m2\pi \le \frac{\pi }{3}\\
    – \frac{{5\pi }}{6} \le l2\pi \le – \frac{\pi }{3}
    \end{array} \right.\\
    \Leftrightarrow \left[ \begin{array}{l}
    – \frac{1}{4} \le k \le 0\\
    – \frac{1}{{12}} \le m \le \frac{1}{6}\\
    – \frac{5}{{12}} \le l \le – \frac{1}{6}
    \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
    k = 0\\
    m = 0\\
    l \in \emptyset
    \end{array} \right.\\
    \Rightarrow pt\,\,\,co\,\,2\,\,\,nghiem\,\,\,x \in \left[ {0;\,\,\frac{\pi }{2}} \right]\,\,\,la:\,\,\,\,x \in \left\{ {\frac{\pi }{6};\,\,\frac{\pi }{2}} \right\}.
    \end{array}\]

    Bình luận
  2. Đáp án:

     

    Giải thích các bước giải:

     `2sin^2 x-3sin x+1^2=0`

    `⇔` \(\left[ \begin{array}{l}sin x=1\\sin x=\dfrac{1}{2}\end{array} \right.\) 

    `⇔` \(\left[ \begin{array}{l}x=\dfrac{\pi}{2}+k2\pi\ (k \in \mathbb{Z})\\\left[ \begin{array}{l}x=\dfrac{\pi}{6}+k2\pi\ (k \in \mathbb{Z})\\x=\dfrac{5\pi}{6}+k2\pi\ (k \in \mathbb{Z})\end{array} \right.\end{array} \right.\)  

    Bình luận

Viết một bình luận