1,Tìm x thuộc Z: (x+3).(y+1)-1=2. 2,Tìm x ,biết :2|x-5|-3=5 27/10/2021 Bởi Amaya 1,Tìm x thuộc Z: (x+3).(y+1)-1=2. 2,Tìm x ,biết :2|x-5|-3=5
Đáp án: (x+3)(y+1)−1=2(x+3)(y+1)-1=2 ⇔(x+3)(y+1)=3⇔(x+3)(y+1)=3 Vì x;y∈Z⇒(x+3);(y+1)∈Zx;y∈Z⇒(x+3);(y+1)∈Z ⇔(x+3);(y+1)∈Ư(3)={±1;±3}⇔(x+3);(y+1)∈Ư(3)={±1;±3} +)x+3∈Ư(3)={±1;±3}+)x+3∈Ư(3)={±1;±3} ⇒x+3=1⇔x=−2⇒x+3=1⇔x=-2 x+3=−1⇔x=−4x+3=-1⇔x=-4 x+3=3⇔x=0x+3=3⇔x=0 x+3=−3⇔x=−6x+3=-3⇔x=-6 +)y+1∈Ư(3)={±1;±3}+)y+1∈Ư(3)={±1;±3} ⇒ y+1=1⇔y=0⇒ y+1=1⇔y=0 y+1=−1⇔y=−2y+1=-1⇔y=-2 y+1=3⇔y=2y+1=3⇔y=2 y+1=−3⇔y=−4y+1=-3⇔y=-4 Vậy (x;y)∈(−2;0);(−4;2);(0;2);(−6;−4)(x;y)∈(-2;0);(-4;2);(0;2);(-6;-4) 2/ 2|x−5|−3=52|x-5|-3=5 ⇔2∣x−5∣=8⇔2∣x−5∣=8 ⇔∣x−5∣=4⇔∣x−5∣=4 ⇔⇔[x−5=4x−5=−4[x−5=4x−5=−4 ⇔⇔[x=9x=1[x=9x=1 Vậy x∈{1;9} Giải thích các bước giải: Bình luận
1/ `(x+3)(y+1)-1=2` `⇔(x+3)(y+1)=3` Vì `x;y∈Z ⇒(x+3);(y+1)∈Z` `⇔(x+3);(y+1)∈Ư(3)={+-1;+-3}` `+) x+3∈Ư(3)={+-1;+-3}` `⇒ x+3=1⇔x=-2` `x+3=-1⇔x=-4` `x+3=3⇔x=0` `x+3=-3⇔x=-6` `+) y+1∈Ư(3)={+-1;+-3}` `⇒ y+1=1⇔y=0` `y+1=-1⇔y=-2` `y+1=3⇔y=2` `y+1=-3⇔y=-4` Vậy `(x;y)∈(-2;0);(-4;2);(0;2);(-6;-4)` 2/ `2|x-5|-3=5` `⇔2∣x−5∣=8` `⇔∣x−5∣=4` `⇔`\(\left[ \begin{array}{l}x−5=4\\x-5=-4\end{array} \right.\) `⇔`\(\left[ \begin{array}{l}x=9\\x=1\end{array} \right.\) Vậy `x∈{1;9}` Bình luận
Đáp án:
(x+3)(y+1)−1=2(x+3)(y+1)-1=2
⇔(x+3)(y+1)=3⇔(x+3)(y+1)=3
Vì x;y∈Z⇒(x+3);(y+1)∈Zx;y∈Z⇒(x+3);(y+1)∈Z
⇔(x+3);(y+1)∈Ư(3)={±1;±3}⇔(x+3);(y+1)∈Ư(3)={±1;±3}
+)x+3∈Ư(3)={±1;±3}+)x+3∈Ư(3)={±1;±3}
⇒x+3=1⇔x=−2⇒x+3=1⇔x=-2
x+3=−1⇔x=−4x+3=-1⇔x=-4
x+3=3⇔x=0x+3=3⇔x=0
x+3=−3⇔x=−6x+3=-3⇔x=-6
+)y+1∈Ư(3)={±1;±3}+)y+1∈Ư(3)={±1;±3}
⇒ y+1=1⇔y=0⇒ y+1=1⇔y=0
y+1=−1⇔y=−2y+1=-1⇔y=-2
y+1=3⇔y=2y+1=3⇔y=2
y+1=−3⇔y=−4y+1=-3⇔y=-4
Vậy (x;y)∈(−2;0);(−4;2);(0;2);(−6;−4)(x;y)∈(-2;0);(-4;2);(0;2);(-6;-4)
2/
2|x−5|−3=52|x-5|-3=5
⇔2∣x−5∣=8⇔2∣x−5∣=8
⇔∣x−5∣=4⇔∣x−5∣=4
⇔⇔[x−5=4x−5=−4[x−5=4x−5=−4
⇔⇔[x=9x=1[x=9x=1
Vậy x∈{1;9}
Giải thích các bước giải:
1/
`(x+3)(y+1)-1=2`
`⇔(x+3)(y+1)=3`
Vì `x;y∈Z ⇒(x+3);(y+1)∈Z`
`⇔(x+3);(y+1)∈Ư(3)={+-1;+-3}`
`+) x+3∈Ư(3)={+-1;+-3}`
`⇒ x+3=1⇔x=-2`
`x+3=-1⇔x=-4`
`x+3=3⇔x=0`
`x+3=-3⇔x=-6`
`+) y+1∈Ư(3)={+-1;+-3}`
`⇒ y+1=1⇔y=0`
`y+1=-1⇔y=-2`
`y+1=3⇔y=2`
`y+1=-3⇔y=-4`
Vậy `(x;y)∈(-2;0);(-4;2);(0;2);(-6;-4)`
2/
`2|x-5|-3=5`
`⇔2∣x−5∣=8`
`⇔∣x−5∣=4`
`⇔`\(\left[ \begin{array}{l}x−5=4\\x-5=-4\end{array} \right.\)
`⇔`\(\left[ \begin{array}{l}x=9\\x=1\end{array} \right.\)
Vậy `x∈{1;9}`