1/ Tính: a) √(1 + √2)^2 + √(√3 – √2)^2 b) √7 – 2√10 – √5 c) √11 + 2√18 + √11 – 2√18 d) √3 + 2√2 – √6 – 2√8 15/07/2021 Bởi Eva 1/ Tính: a) √(1 + √2)^2 + √(√3 – √2)^2 b) √7 – 2√10 – √5 c) √11 + 2√18 + √11 – 2√18 d) √3 + 2√2 – √6 – 2√8
Giải thích các bước giải: Ta có: \(\begin{array}{l}a,\\\sqrt {{{\left( {1 + \sqrt 2 } \right)}^2}} + \sqrt {{{\left( {\sqrt 3 – \sqrt 2 } \right)}^2}} \\ = \left| {1 + \sqrt 2 } \right| + \left| {\sqrt 3 – \sqrt 2 } \right|\\ = \left( {1 + \sqrt 2 } \right) + \left( {\sqrt 3 – \sqrt 2 } \right)\\ = 1 + \sqrt 3 \\b,\\\sqrt {7 – 2\sqrt {10} } – \sqrt 5 \\ = \sqrt {5 – 2.\sqrt 5 .\sqrt 2 + 2} – \sqrt 5 \\ = \sqrt {{{\left( {\sqrt 5 – \sqrt 2 } \right)}^2}} – \sqrt 5 \\ = \left| {\sqrt 5 – \sqrt 2 } \right| – \sqrt 5 \\ = \sqrt 5 – \sqrt 2 – \sqrt 5 \\ = – \sqrt 2 \\c,\\\sqrt {11 + 2\sqrt {18} } + \sqrt {11 – 2\sqrt {18} } \\ = \sqrt {9 + 2.\sqrt 9 .\sqrt 2 + 2} + \sqrt {9 – 2.\sqrt 9 .\sqrt 2 + 2} \\ = \sqrt {{{\left( {\sqrt 9 + \sqrt 2 } \right)}^2}} + \sqrt {{{\left( {\sqrt 9 – \sqrt 2 } \right)}^2}} \\ = \left| {3 + \sqrt 2 } \right| + \left| {3 – \sqrt 2 } \right|\\ = 3 + \sqrt 2 + 3 – \sqrt 2 \\ = 6\\d,\\\sqrt {3 + 2\sqrt 2 } – \sqrt {6 – 2\sqrt 8 } \\ = \sqrt {2 + 2\sqrt 2 .1 + 1} – \sqrt {4 – 2.\sqrt 4 .\sqrt 2 + 2} \\ = \sqrt {{{\left( {\sqrt 2 + 1} \right)}^2}} – \sqrt {{{\left( {\sqrt 4 – \sqrt 2 } \right)}^2}} \\ = \left| {\sqrt 2 + 1} \right| – \left| {2 – \sqrt 2 } \right|\\ = \sqrt 2 + 1 – \left( {2 – \sqrt 2 } \right)\\ = 2\sqrt 2 – 1\end{array}\) Bình luận
Giải thích các bước giải:
Ta có:
\(\begin{array}{l}
a,\\
\sqrt {{{\left( {1 + \sqrt 2 } \right)}^2}} + \sqrt {{{\left( {\sqrt 3 – \sqrt 2 } \right)}^2}} \\
= \left| {1 + \sqrt 2 } \right| + \left| {\sqrt 3 – \sqrt 2 } \right|\\
= \left( {1 + \sqrt 2 } \right) + \left( {\sqrt 3 – \sqrt 2 } \right)\\
= 1 + \sqrt 3 \\
b,\\
\sqrt {7 – 2\sqrt {10} } – \sqrt 5 \\
= \sqrt {5 – 2.\sqrt 5 .\sqrt 2 + 2} – \sqrt 5 \\
= \sqrt {{{\left( {\sqrt 5 – \sqrt 2 } \right)}^2}} – \sqrt 5 \\
= \left| {\sqrt 5 – \sqrt 2 } \right| – \sqrt 5 \\
= \sqrt 5 – \sqrt 2 – \sqrt 5 \\
= – \sqrt 2 \\
c,\\
\sqrt {11 + 2\sqrt {18} } + \sqrt {11 – 2\sqrt {18} } \\
= \sqrt {9 + 2.\sqrt 9 .\sqrt 2 + 2} + \sqrt {9 – 2.\sqrt 9 .\sqrt 2 + 2} \\
= \sqrt {{{\left( {\sqrt 9 + \sqrt 2 } \right)}^2}} + \sqrt {{{\left( {\sqrt 9 – \sqrt 2 } \right)}^2}} \\
= \left| {3 + \sqrt 2 } \right| + \left| {3 – \sqrt 2 } \right|\\
= 3 + \sqrt 2 + 3 – \sqrt 2 \\
= 6\\
d,\\
\sqrt {3 + 2\sqrt 2 } – \sqrt {6 – 2\sqrt 8 } \\
= \sqrt {2 + 2\sqrt 2 .1 + 1} – \sqrt {4 – 2.\sqrt 4 .\sqrt 2 + 2} \\
= \sqrt {{{\left( {\sqrt 2 + 1} \right)}^2}} – \sqrt {{{\left( {\sqrt 4 – \sqrt 2 } \right)}^2}} \\
= \left| {\sqrt 2 + 1} \right| – \left| {2 – \sqrt 2 } \right|\\
= \sqrt 2 + 1 – \left( {2 – \sqrt 2 } \right)\\
= 2\sqrt 2 – 1
\end{array}\)